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ABSTRACT

The report documents work carried out over the period 31 July 1996 to 31 December
1997 on a Multi-University Research Initiative (MURI) program under Office of Naval
Research (ONR) sponsorship. The program couples transducer materials research in the
Materials Research Laboratory (MRL), design and testing studies in the Applied Research
Laboratory (ARL) and vibration and flow noise control in the Center for Acoustics and
Vibration (CAV) at Penn State.

The overarching project objective is the development of acoustic transduction
materials and devices of direct relevance to Navy needs and with application in commercial
products. The initial focus of studies is upon high performance sensors and high authority
high strain actuators. This objective also carries the need for new materials, new device
designs, improved drive and control strategies and a continuing emphasis upon reliability
under a wide range of operating conditions.

In Material Studies, undoubtedly major breakthroughs have occurred in the ultra-
high strain relaxor ferroelectric systems. Earlier reports of unusual piezoelectric activity in
single crystal perovskite relaxors have been amply confirmed in the lead zinc niobate : lead
titanate, and lead magnesium niobate : lead titanate systems for compositions of
rhombohedral symmetry close to the Morphotropic Phase Boundary (MPB) in these solid
solutions. Analysis of the unique properties of 001 field poled rhombohedral ferroelectric
crystals suggests new intrinsic mechanisms for high strain and carries the first hints of how to
move from lead based compositions. A major discovery of comparable importance is a new
mode of processing to convert PVDF:TtFE copolymer piezoelectric into a relaxor
ferroelectric in which electrostrictive strains of 4% have been demonstrated at high fields.
Both single crystal and polymer relaxors appear to offer energy densities almost order of
magnitude larger than in earlier polycrystal ceramic actuators.

Transducer Studies have continued to exploit the excellent sensitivity and remarkable
versatility of the cymbal type flextensional element. Initial studies of a small cymbal arrays
show excellent promise in both send and receive modes, and larger arrays are now under
construction for tests at ARL. New studies in constrained layer vibration damping and in flow
noise reduction are yielding exciting new results.

In Actuator Studies, an important advance in piezoelectric generated noise control
now permits wider use of acoustic emission as a reliability diagnostic technique. Joint studies
with NRL, Washington have developed a completely new d, 5 driven torsional actuator and the
CAYV program element has designed an exciting high strain high force inchworm.

Finite element analysis continues to be an important tool for understanding the more
complex composite structures and their beam forming capability in water. Thin and Thick
Thin Film Studies are gearing up to provide the material base for micro-tonpilz arrays. New
exploitation of ultra sensitive strain and permittivity measurements is providing the first
reliable data of electrostriction in simple solids, and suggesting new modes for separating the
polarizability contributors in dielectrics and electrostrictors.
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ABSTRACT

This paper reviews recent developments of ultrasonic motors using piezoelectric resonant
vibrations. Following the historical background, ultrasonic motors using the standing and
traveling waves are introduced. Driving principles and motor characteristics are explained
in comparison with the conventional electromagnetic motors. After a brief discussion on
speed and thrust calculation, finally, reliability issues of ultrasonic motors are described.



1. INTRODUCTION

In office equipment such as printers and floppy disk drives, market research indicates that

tiny motors smaller than 1 cm3 would be in large demand over the next ten years.
However, using the conventional electromagnetic motor structure, it is rather difficult to
produce a motor with sufficient energy efficiency. Piezoelectric ultrasonic motors, whose
efficiency is insensitive to size, are superior in the mm-size motor area.

In general, piezoelectric and electrostrictive actuators are classified into two categories,
based on the type of driving voltage applied to the device and the nature of the strain
induced by the voltage: (1) rigid displacement devices for which the strain is induced
unidirectionally along an applied dc field, and (2) resonating displacement devices for
which the alternating strain is excited by an ac field at the mechanical resonance frequency
(ultrasonic motors). The first category can be further divided into two types: servo
displacement transducers (positioners) controlled by a feedback system through a position-
detection signal, and pulse-drive motors operated in a simple on/off switching mode,
exemplified by dot-matrix printers.

The AC resonant displacement is not directly proportional to the applied voltage, but is,
instead, dependent on adjustment of the drive frequency. Although the positioning
accuracy is not as high as that of the rigid displacement devices, very high speed motion
due to the high frequency is an attractive feature of the ultrasonic motors. Servo
displacement transducers, which use feedback voltage superimposed on the DC bias, are
used as positioners for optical and precision machinery systems. In contrast, a pulse drive
motor generates only on / off strains, suitable for the impact elements of dot-matrix or ink-
jet printers.

The materials requirements for these classes of devices are somewhat different, and certain
compounds will be better suited for particular applications. The ultrasonic motor, for
instance, requires a very hard piezoelectric with a high mechanical quality factor Q, in order
to minimize heat generation and maximize displacement. Note that the resonance
displacement is equal to a-dEL, where d is a piezoelectric constant, E, applied electric

field, L, sample length and a is an amplification factor proportional to the mechanical Q.
The servo-displacement transducer suffers most from strain hysteresis and, therefore, a
PMN electrostrictor is preferred for this application. Notice that even in a feedback system
the hysteresis results in a much lower response speed. The pulse-drive motor requires a
low permittivity material aiming at quick response with a limited power supply rather than a
small hysteresis, so that soft PZT piezoelectrics are preferred to the high-permittivity PMN
for this application.

This paper deals with ultrasonic motors using resonant vibrations. Following the historical
background, various ultrasonic motors are introduced. Driving principles and motor
characteristics are explained in comparison with the conventional electromagnetic motors.
After a brief discussion on speed and thrust calculation, finally, reliability issues of
ultrasonic motors are described.

2. CLASSIFICATION OF ULTRASONIC MOTORS

2.1  Historical Background

Electromagnetic motors were invented more than a hundred years ago. While these motors
still dominate the industry, a drastic improvement cannot be expected except through new
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discoveries in magnetic or superconducting materials. Regarding conventional

electromagnetic motors, tiny motors smaller than 1cm3 are rather difficult to produce with
sufficient energy efficiency. Therefore, a new class of motors using high power ultrasonic
energy -- ultrasonic motor, is gaining wide spread attention. Ultrasonic motors made with
piezoceramics whose efficiency is insensitive to size are superior in the mini-motor area.
Figure 1 shows the basic construction of ultrasonic motors, which consist of a high-
frequency power supply, a vibrator and a slider. Further, the vibrator is composed of a
piezoelectric driving component and an elastic vibratory part, and the slider is composed of
an elastic moving part and a friction coat.

Though there had been some earlier attempts, the practical ultrasonic motor was proposed

firstly by H. V. Barth of IBM in 1973.1) As shown in Fig. 2, the rotor was pressed
against two horns placed at different locations. By exciting one of the homs, the rotor was
driven in one direction, and by exciting the other horn, the rotation direction was reversed.
Various mechanisms based on virtually the same principle were proposed by V. V.

Lavrinenko2) and P. E. Visiliev3) in the former USSR. Because of difficulty in
maintaining a constant vibration amplitude with temperature rise, wear and tear, the motors
were not of much practical use at that time.

In 1980's, with increasing chip pattern density, the semiconductor industry began to
request much more precise and sophisticated positioners which do not generate magnetic
field noise. This urgent request has accelerated the developments in ultrasonic motors.
Another advantage of ultrasonic motors over the conventional electromagnetic motors with
expensive copper coils, is the improved availability of piezoelectric ceramics at reasonable
cost. Japanese manufacturers are producing piezoelectric buzzers around 30 - 40 cent price
range at the moment.

Let us summarize the merits and demerits of the ultrasonic motors:

merits

Low speed and high torque - Direct drive

Quick response, wide velocity range, hard brake and no backlash
- Excellent controllability
~ Fine position resolution

High power / weight ratio and high efficiency

Quiet drive

Compact size and light weight

Simple structure and easy production process

Negligible effect from external magnetic or radioactive fields,

and also no generation of these fields

Demerits
8. Necessity for a high frequency power supply

9. Less durability due to frictional drive
10. Drooping torque vs. speed characteristics

N

Nk




2.2 Classification and Principles of Ultrasonic Motors

From a customer's point of view, there are rotary and linear type motors. If we categorize

them from the vibrator shape, there are rod type, n-shaped, ring (square) and cylinder
types, which are illustrated in Fig. 3. Two categories are being investigated for ultrasonic
motors from a vibration characteristic viewpoint: a standing-wave type and a propagating-
wave type. Refresh your memory on the wave formulas. The standing wave is expressed
by

us(x,t) = A cos kx - cos ot, (1)

while the propagating wave is expressed as

up(x,t) = A cos (kx - wt). 2)

Using a trigonometric relation, Eqg. (2) can be transformed as

up(x,t) = A cos kx - cos wt + A cos (kx - ®/2)- cos (wt - 7/2). 3)

This leads to an important result, i. e. a propagating wave can be generated by
superimposing two standing waves whose phases differ by 90 degree to each other both in
time and in space. This principle is necessary to generate a propagating wave on a limited
volume/size substance, because only standing waves can be excited stably in a finite size.

Standing Wave Type
The standing-wave type is sometimes referred to as a vibratory-coupler type or a

"woodpecker" type, where a vibratory piece is connected to a piezoelectric driver and the
tip portion generates flat-elliptical movement. Figure 4 shows a simple model proposed by

T. Sashida.4) A vibratory piece is attached to a rotor or a slider with a slight cant angle 6.
Take the x-y coordinate so that the x axis is normal to the rotor face. When a vibration
displacement

ux = uQ sin (ot + o) (C))

is excited at the piezoelectric vibrator, the vibratory piece generates bending because of
restriction by the rotor, so that the tip moves along the rotor face between A --> B, and
freely between B --> A. If the vibratory piece and the piezo-vibrator are tuned properly,
they form a resonating structure, and if the bending deformation is sufficiently small
compared with the piece length, the tip locus during the free vibration (B --> A) is
represented by

x = u(Q sin (0t + a),
y = u] sin (wt + B), 5)

which is an elliptical locus. Therefore, only the duration A --> B provides a unidirectional
force to the rotor through friction, i. e. intermittent rotational torque or thrust. However,
because of the inertia of the rotor, the rotation speed ripple is not large to be observed. The
standing-wave type, in general, is low in cost (one vibration source) and has high



efficiency (up to 98% theoretically), but lack of control in both clockwise and
counterclockwise directions is a problem.

Propagating Wave Type

By comparison, the propagating-wave type (a surface-wave or "surfing" type) combines
two standing waves with a 90 degree phase difference both in time and in space. The
principle is shown in Fig. 5. A surface particle of the elastic body draws an elliptical locus
due to the coupling of longitudinal and transverse waves. This type requires, in general,

two vibration sources to generate one propagating wave, leading to low efficiency (not
more than 50 %), but it is controllable in both the rotational directions.

3. STANDING WAVE TYPE MOTORS
3.1 Rotary Motors

T. Sashida developed a rotary type motor similar to the fundamental structure.4) Four
vibratory pieces were installed on the edge face of a cylindrical vibrator, and pressed onto
the rotor. This is one of the prototypes which triggered the present development fever on
ultrasonic motors. A rotation speed of 1500rpm, torque of 0.08 N-m and output of 12 W
(efficiency 40%) were obtained under an input of 30 W at 35 KHz. This type of ultrasonic
motor can provide a speed much higher than the inchworm types, because of high
frequency and an amplified vibration displacement at the resonance frequency.

Hitachi Maxel significantly improved the torque and efficiency by using a torsional coupler
replacing Sashida's vibratory pieces (Fig. 6), and by the increasing pressing force with a
bolt.5) The torsional coupler looks like an old fashioned TV channel knob, consisting of
two legs which transform longitudinal vibration generated by the Langevin vibrator to a
bending mode of the knob disk, and a vibratory extruder. Notice that this extruder is
aligned with a certain cant angle to the legs, which transforms the bending to a torsion
vibration. This transverse moment coupled with the bending up-down motion leads to an
elliptical rotation on the tip portion, as illustrated in Fig. 6(b). The optimum pressing force
to get the maximum thrust is obtained, when the ellipse locus is deformed roughly by half.
A motor with 30mm x 60mm in size and 20 - 30° in cant angle between a leg and a
vibratory piece provided the torque as high as 1.3 N-m and the efficiency of 80%.
However, this type provides only unidirectional rotation. Notice that even the drive of the
motor is intermittent, the output rotation becomes very smooth because of the inertia of the
rotor. .

The Penn State University has developed a compact ultrasonic rotory motor as tiny as 3
mm in diameter. As shown in Fig. 7, the stator consists of a piezoelectric ring and two
concave/convex metal endcaps with "windmill” shaped slots bonded together, so as to
generate a coupled vibration of up-down and torsional type.6) Since the component
number and the fabrication process were minimized, the fabrication price would be
decreased remarkably, and it would be adaptive to the disposable usage. When driven at
160 kHz, the maximum revolution 600 rpm and the maximum torque 1 mN-m were

obtained for a 11 mm¢ motor.

Tokin developed a piezoelectric ceramic cylinder for a torsional vibrator (Fig. 8).7) Using
an interdigital type electrode pattern printed with 45° cant angle on the cylinder surface,
torsion vibration was generated, which is applicable to a simple ultrasonic motor.



S. Ueha proposed a two-vibration-mode coupled type (Fig. 9), i. €. a tortional Langevin
vibrator was combined with three multilayer actuators to generate larger longitudinal and
transverse surface displacement of the stator, as well as to control their phase difference.8)
The phase change can change the rotation direction.

3.2 Linear Motors

K. Uchino invented a n-shaped linear motor.9) This linear motor is equipped with a
multilayer piezoelectric actuator and fork-shaped metallic legs as shown in Fig. 10. Since
there is a slight difference in the mechanical resonance frequency between the two legs, the
phase difference between the bending vibrations of both legs can be controlled by changing
the drive frequency. The walking slider moves in a way similar to a horse using its fore
and hind legs when trotting. A test motor 20 x 20 x 5 mm3 in dimension exhibited a
maximum speed of 20 cm/s and a maximum thrust of 0.2 kgf with a maximum efficiency
of 20%, when driven at 98kHz at 6V (actual power = 0.7 W). Figure 11 shows the motor
characteristics of the linear motor. This motor has been employed in a precision X-Y stage.

Tomikawa's rectangular plate motor is also intriguing.10) As shown in Fig. 12, a
combination of the two modes forms an elliptical displacement motion. The two modes
chosen were the 1st longitudinal mode (L] mode) and the 8th bending mode (Bg), whose

resonance frequencies were almost the same. By applying voltages with a phase difference
of 90 degree to the L-mode and B-mode drive electrodes, elliptical motion in the same
direction can be obtained at both ends of this plate, leading to rotation of the rollers in
contact with these points. Anticipated applications are paper or card senders. The reader

can find other linear motor ideas in Ueha and Tomikawa's book.11)

4. PROPAGATING WAVE TYPE MOTORS
4.1 Linear Motors

T. Sashida and S. Ueha et al. manufactured a linear motor as illustrated in Fig. 13.12.13)
The two piezoelectric vibrators installed at both ends of a transmittance steel rod excite and
receive the traveling transverse wave (antisymmetric fundamental Lamb wave mode).
Adjusting a load resistance in the receiving vibrator leads to a perfect traveling wave.
Exchanging the role of exciting and receiving piezo-components provided a reverse moving
direction.

The bending vibration transmitting via the rail rod is represented by the following
differential equation:

(@2w(x,1)/0t2) + (E1/ p A) (@4w(x,tVox4) =0, (6)

where w(x,t) is a transverse displacement (see Fig. 5), x, the coordinate along the rod axis,
E, Young's modulus of the rod, A, the cross sectional area, p, density and I is the moment
of inertia of the cross-section. Assuming a general solution of Eq. (6) as

w(x,t) = W(x) (A sin wt + B cos mt), €))

the wave transmission velocity v and wavelength A are caluculated as
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v=(EL/p A4 o, (8)
A=2n (EI/pA)1/4/\IZf ©)

Using the bending vibration, the wavelength A can be easily chosen as short as several mm
to satisfy a stable surface contact with the slider by changing the cross-section area A or the

moment of inertia I of the transmission rod. In the case of Fig. 13, A = 26.8 mm.

A slider, the contact face of which is coated with rubber or vinyl resin sheet, clamps the
transmission rod with an appropriate force. The transmission efficiency is strongly
affected by the vibration source position on the rod, showing a periodic change with the
distance from the free end of the rod to the position of the vibrator. Taking account of the

wave phase, the vibration source should be fixed at the distance of the wavelength A (i. e.
26.8 mm) from the rod end.

The slider made of a steel clamper 60 mm in length, which theoretically covers two waves,
was driven at a speed of 20 cm/s with a thrust of S0 N at 28 kHz. A serious problem with
this type is found in low efficiency around 3% because the whole rod must be excited even
when only a small portion is utilized for the output. Thus, ring type motors were invented
by Sashida, where the whole rod can be utilized, because the lengths of the stator and rotor
are the same.

4.2  Rotary Motors

When we deform the rod discussed in the previous section to make a ring by connecting the
two ends topologically, we can make a rotary type motor using a bending vibration. Two
types of "ring" motor designs are possible; (a) bending mode and (b) extensional mode.14)
Though the principle is similar to the linear type, more sophisticated structures are
employed in the ceramic poling and in the mechanical support mechanism.

In general, when a vibration source is driven at one position on a closed ring (circular or
square) at a frequency corresponding to the resonance of this ring, only a standing wave is
excited, because the vibration propagates in two directions symmetrically to the vibration
source and interferes with each other. When multiple vibration sources are installed on the
ring, displacements can be obtained by superimposing all the waves (two waves from each
vibration source). Using this superposition principle, we can generate a propagating wave
which is a rotation of the standing-wave shape, even in a closed ring.

Assuming a vibration source of A cos t at the point 8 = 0 of the elastic ring, the n-th mode
standing wave can be expressed by

u(0,t) = A cos nf cos wt, (10)

and the traveling wave by



u(8,t) = A cos (nf - wt). (11)
Since the traveling wave can be expressed as a superimposition of two standing waves as

u(6,t) = A cos nf cos wt + A cos (n6 — 1/2) cos (0t - /2), (12)

we derive an important principle: a propagating wave can be generated by superimposing
two standing waves whose phases differ by 90 degree to each other both in time and in
space. More generally, the phase difference can be chosen arbitrarily (except 0, - &, &), as
far as the phase difference is the same in space and in time. The vibration source positions
for generating a propagating wave on a ring are illustrated in Fig. 14. In principle, the
excitation at only two parts of the ring is sufficient to generate a traveling wave. However,
in practice, the number of the vibration sources is increased to as many as possible to
increase the mechanical output. The symmetry of the electrode structure needs to be
considered.

Figure 15 shows the famous Sashida motor.15) By means of the traveling elastic wave
induced by a thin piezoelectric ring, a ring-type slider in contact with the "rippled” surface
of the elastic body bonded onto the piezoelectric is driven in both directions by exchanging
the sine and cosine voltage inputs. Another advantage is its thin design, which makes it
suitable for installation in cameras as an automatic focusing device. Eighty percent of the
exchange lenses in Canon's "EOS" camera series have already been replaced by the
ultrasonic motor mechanism. Most of the studies on ultrasonic motors done in the US and
Japan have been modifications of Sashida's type.

The PZT piezoelectric ring is divided into 16 positively and negatively poled regions and
two asymmetric electrode gap regions so as to generate a 9th mode propagating wave at 44
kHz. A proto-type was composed of a brass ring of 60 mm in outer diameter, 45 mm in
inner diameter and 2.5 mm in thickness, bonded onto a PZT ceramic ring of 0.5 mm in
thickness with divided electrodes on the back-side. The rotor was made of polymer coated
with hard rubber or polyurethane. Figure 16 shows Sashida's motor characteristics.

Canon utilized the "surfing" motor for a camera automatic focusing mechanism, installing
the ring motor compactly in the lens frame. It is noteworthy that the stator elastic ring has
many teeth, which can magnify the transverse elliptical displacement and improve the
speed. The lens position can be shifted back and forth through a screw mechanism. The
advantages of this motor over the conventional electromagnetic motor are:

1. Silent drive due to the ultrasonic frequency drive and no gear mechanism (. e.
more suitable to video cameras with microphones).

2. Thin motor design and no speed reduction mechanism such as gears, leading to
space saving.

3. Energy saving.

A general problem encountered in these traveling wave type motors is the support of the
stator. In the case of a standing wave motor, the nodal points or lines are generally
supported; this causes minimum effects on the resonance vibration. To the contrary, a
traveling wave does not have such steady nodal points or lines. Thus, special
considerations are necessary. In Fig. 15, the stator is basically fixed very gently along the
axial direction through felt so as not to suppress the bending vibration. It is important to



note that the stop pins which latch onto the stator teeth only provide high rigidity against the
rotation.

Matsushita Electric progosed a nodal line support method using a higher order vibration
mode (see Fig. 17(b)).1 ) Figure 17(a) shows the stator structure, where a wide ring was
supported at the nodal circular line and "teeth” were arranged on the maximum amplitude
circle to get larger revolution.

Seiko Instruments miniaturized the ultrasonic motor to as tiny as 10 mm in diameter using

basically the same principle.17) Figure 18 shows the construcion of this small motor with
10 mm diameter and 4.5 mm thickness. A driving voltage of 3 V and a current 60 mA

provides 6000 rev/min (no-load) with torque of 0.1 mN-m. AlliedSignal developed
ultrasonic motors similar to Shinsei's, which would be utilized as mechanical switches for
launching missiles.18)

It is important to note that the unimorph (bonded type of a piezoceramic plate and a metal
plate) bending actuation can not provide high efficiency theoretically, because the
electromechanical coupling factor k is usually less than 10%. Therefore, instead of the
unimorph structure, a simple disk was directly used to make motors.19:20) Figure 19
shows (1,1), (2,1) and (3,1) modes of a simple disk, which are axial-asymmetric modes.
Both the inner and outer circumferences can provide a rotation like a "hula hoop."

Another intriguing design is a "plate-spinning" type proposed by Tokin.21) Figure 20
shows its principle. A rotary bending vibration was excited on a PZT rod by a combination
of sine and cosine voltages, then a cup was made to contact the "spinning” rod with the
internal face for achieving rotation.

4.3 Comparison among Various Ultrasonic Motors

The standing-wave type, in general, is low in cost (one vibration source) and has high
efficiency (up to 98% theoretically), but lack of control in both clockwise and
counterclockwise directions is a problem. By comparison, the propagating-wave type
combines two standing waves with a 90 degree phase difference both in time and in space.
This type requires, in general, two vibration sources to generate one propagating wave,
leading to low efficiency (not more than 50 %), but is controllable in both rotational
directions.

Table I summarizes the motor characteristics of the vibration coupler standing wave type
(Hitachi Maxel), surface propagating wave type (Shinsei Industry) and a compromised
"teeth" vibrator type (Matsushita).22)

5. MICRO-WALKING MACHINES

Recent biomedical experiments and medical surgery require sophisticated tiny actuators for
micro-manipulation of optical fibers, catheters, micro surgery knives etc. Thus,
microactuators, particularly micro-walking devices have been studied intensively.

The first systematic study was performed by T. Hayashi on PVDF bimorph actuators.23)
Figure 21 shows two designs of micro-machines. The devices were fabricated using two
30 um-thick PVDF films bonded together with a curvature of 1 cm™ 1 The curved bimorph
is electrically driven at the mechanical resonance, which generates a large opening and



closing motion at the contact point with the floor. In order to control the device in both
clockwise and counter-clockwise rotations, a slight difference of the leg width between the
right and left legs was intentionally made, so as to provide a slight difference between their
resonance frequencies. By choosing a suitable drive frequency, the right or left leg pair is
more mechanically excited, leading to curving.

The n-shape ustrasonic motor described in Section 3.2 can be modified to be driven in a
propagating wave manner. K. Ohnishi et al. developed a motor as shown in Fig. 22,

where two multilayer actuators were installed at the two comners of the n—shaped frame,
and driven with a 90 degree phase difference, revealing a "trotting” leg motion.24)

One ceramic multilayer component actuator was proposed by Mitsui Sekka.25) Figure 23
shows the electrode pattern. Only by the external connection, a combined vibration of the
longitudinal L and bending B2 modes could be excited. The motor characteristics are
shown in Fig. 24.

Let us introduce a surface acoustic wave motor proposed by Kurosawa and Higuchi.26)
As shown in Fig. 25(a), Rayleigh waves were excited in two crossed directions on a
127.8°-rotation Y-LiNbO3 plate with two pairs of interdigital electrode patterns. Figure
25(b) shows a slider structure with three balls as legs. The driving vibration amplitude and
the wave velocity of the Rayleigh waves were adjusted to 6.1 nm and 22 cm/sec for both x
and y directions. It is important to note that even though the up-down vibrational amplitude
is much smaller (< 1/10) than the surface roughness of the LiNbO3, the slider was
transferred smoothly. The mechanism has not been clarified yet, it might be due to the
locally enhanced friction force through a ball-point contact. This may be categorized as a
nano-actuator.

6. SPEED/THRUST CALCULATION

We will introduce the speed and thrust calculation for ultrasonic motors roughly in this

section.27) These calculations depend on the type of motors as well as the contact
conditions. The intermittent drive must be considered for the vibratory coupler type
motors, while the surface wave type provides the continuous drive in the calculation. The
contact models include:

(1) Rigid slider & rigid stator,
(2) Compliant slider & rigid stator,
(3) Compliant slider & compliant stator.

6.1  Surface Wave Type

If the rigid slider and rigid stator model is employed, the slider speed can be obtained from
the horizontal velocity of the surface portion of the stator (see Fig. 26). If the frequency

and wavelength of the stator vibration are f and A, respectively, and the normal vibration
amplitude (up-down) is Z, and the distance between the surface and the neutral plane is eg,
the wave propagation speed is given by

V =fA. (13)
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This is the sound phase velocity of the vibration mode! To the contrary, the speed of the
slider is given by

v=4rn2Zegf/A. (14)

It is noteworthy that the slider moves in the opposite direction with respect to the wave
traveling direction.

6.2  Vibration Coupler Type

Here, the compliant slider : rigid stator model is introduced. As shown in Fig. 27, the
horizontal and vertical displacements of the rigid stator are given by

a =a() cos wt,
b = bQ sin wt. (15)

Thus, the horizontal velocity becomes
vh = (0a/dt) = - aQ o sin wt. (16)
We ususally employ the following three hypotheses for futher calculations:

Hypothesis 1: Normal force is given as follows, using a characteristic angle ¢ (between P1
and P2):

n =P [sin ot - cos(¢/2)] for (/2 - ¢/2) <ot< (7/2 + ¢/2)
(in contact)
n=0 for0 <mt< (72 - ¢/2), (W2 + ¢/2) <wi< 27
(out of contact) a7

Hypothesis 2: The slider speed is constant (V().
Hypothesis 3: The maximum thrust is given by the dynamic friction constant ji4:

f=-udn - Accelerating force
for (/2 - y/2) <ot< (/2 + y/2)
f=pdn - Dragging force (18)

for (r/2 - $/2) <ot< (/2 - Y/2), (1/2 - Y/2) <ot (7/2 + §/2)

The main results are summarized. If we know ¢ experimentally (or theoretically taking into
account the geometry and elasticity) under a certain normal force N, we can calculate the
no-load speed V( from

V0 = - agw sin (¢/2) / (¢/2), (19)

and no-slip position angle y from the following relation:
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cos (y/2) = sin (¢/2) / (¢/2). (20)

Then, finally, we can obtain the thrust from
F=pg N {1 -2 [sin(y/2) - (y/2) cos(9/2)] / [sin(¢/2) - (¢/2) cos($/2)]}.
(1)

Inthe case of $ =0, y =0, Vo = - apw, F =- 0.155 pg N; while in the case of ¢ = &, cos

(y/2) =2r, VO = - (2/r) apw, and F = - 0.542 pd N. With increasing contact period of
the vibratory piece, the thrust F increases by sacrificing the speed.

For other model calculations, refer to the book.11)

7. RELIABILITY OF ULTRASONIC MOTORS

In the development of the ultrasonic motors, the following themes should be systematically
studied:

1. Measuring Methods for High-Field Electromechanical Couplings
2. Materials Development (low loss & high vibration velocity)
3. Piezo-Actuator Designs
a. Heat generation mechanism
b. Degradation mechanisms
c. New multilayer actuator designs
4. USM Designs
a. Displacement magnification mechanisms (horn, hinge-lever)
b. USM types (standing-wave type, propagating-wave type)
c. Frictional contact part
5. Drive/Control
a. High frequency/high power supply
b. Resonance/antiresonance usage

We will discuss the reliability issues in this section: heat generation, friction materials and
drive/control techniques in the ultrasonic motors.

7.1  Heat Géneration

The largest problem in ultrasonic motors is heat generation, which sometimes drives
temperatures up to 120°C and causes a serious degradation of the motor characteristics
through depoling of the piezoceramic. Therefore, the ultrasonic motor requires a very hard
type piezoelectric with a high mechanical quality factor Q, leading to the suppression of
heat generation. It is also notable that the actual mechanical vibration amplitude at the
resonance frequency is directly proportional to this Q value.

Figure 28 shows mechanical Q versus basic composition x at effective vibration velocity
v0=0.05 m/s and 0.5 m/s for Pb(ZrxTi]-x)O3 doped with 2.1 at% of Fe.28) The
decrease in mechanical Q with an increase of vibration level is minimum around the
rhombohedral-tetragonal morphotropic phase boundary (52/48). In other words, the worst
material at a small vibration level becomes the best at a large vibration level, and the data
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obtained by a conventional impedance analyzer does not provide data relevant to high
power materials.

Figure 29 shows an important notion on heat generation from the piezoelectric material.
The resistances Rq and R in the equivalent electrical circuit are separately plotted as a
function of vibration velocity.29) Note that Rm, mainly related to the mechanical loss, is
insensitive to the vibration velocity, while Rq, related to the dielectric loss, changes
significantly around a certain critical vibration velocity. Thus, the resonance loss at a small
vibration velocity is mainly determined by the mechanical loss, and with increasing
vibration velocity, the dielectric loss contribution significantly increases. We can conclude
that heat generation is caused by dielectric loss (i. €. P-E hysteresis loss).

Zheng et al. reported the heat generation from various sizes of multilayer type piezoelectric
ceramic actuators.30) The temperature change was monitored in the actuators when driven
at 3 kV/mm and 300 Hz, and Fig. 30 plots the saturated temperature as a function of Ve/A,
where Ve is the effective volume (electrode overlapped part) and A is the surface area. This
linear relation is reasonable because the volume Ve generates the heat and this heat is
dissipated through the area A. Thus, if you need to suppress the heat, a small Ve/A design
is preferred.

7.2  Frictional Coating and Life Time

Figure 31 plots the efficiency and maximum output of various friction materials.31) High
ranking materials include PTFE (poly tetra fluoro ethylene, Teflon), PPS (Ryton), PBT
(poly butyl terephthalate) and PEEK (poly ethyl ethyl ketone). In practical motors, Econol
(Sumitomo Chemical), Carbon Fiber Reinforced Plastic (Japan Carbon), PPS (Sumitomo
Bakelite) and Polyimide have been popularly used. Figure 32 shows the wear and driving
period for CFRP, which indicates that the 0.5 mm thick coat corresponds to 6000 - 8000
hours life.32) Although the life time of the ultrasonic motor is limited by the characteristics
of the friction material, this problem has been nearly solved in practice for some case. The
durability test of the Shinsei motor (USR 30) is shown below:

Continuous Drive (CW 1min & CCW 1min) under revolution 250 rpm and

load 0.5 kg-cm:
--> After 2000 hours, the revolution change is less than 10 %

Intermittent Drive (CW 1 rotation & CCW 1 rotation) under no-load
--> After 250 million revolutions, no degradation in motor
characteristics :

Taking into account the usual lifetime specifications, e. g. 2000 - 3000 hours for VCR's,
the lifetime of the ultrasonic motor is no longer a problem.

Of course, the lifetime of the motor itself is not identical to the lifetime installed in a device
system. We need further clarification in this issue under severe drive conditions such as
large load and high temperature and humidity.

7.3 Drive/Control Technique

Figure 33 summarizes the control methods of the ultrasonic motors. Taking account of the
controllability and efficiency, pulse width modulation is most highly recommended.

13



Driving the motor at the antiresonant frequency, rather than at the resonant state, is also an
intriguing technique to reduce the load on the piezo-ceramic and the power supply.
Mechanical quality factor Qm and temperature rise have been investigated on a PZT ceramic
rectangular bar, and the results for the fundamental resonance (A-type) and antiresonance
(B-type) modes are plotted in Fig. 34 as a function of vibration velocity.33) It is
recognized that QB is higher than QA over the whole vibration velocity range. In other
words, the antiresonance mode can provide the same mechanical vibration level without
generating heat. Moreover, the usage of "antiresonance,” whose admittance is very low,
requires low current and high voltage for driving, in contrast to high current and low
voltage for the "resonance.” This means that the conventional inexpensive power supply
may be utilized for driving the ultrasonic motor.
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8. SUMMARIES
8.1 Merits and Demerits of Ultrasonic Motors

Ultrasonic motors are characterized by "low speed and high torque,” which are contrasted
with "high speed and low torque" of the conventional electromagnetic motors. Thus, the
ultrasonic motors do not require gear mechanisms, leading to very quiet operation and
space saving. Negligible effects from external magnetic or radioactive fields, and no
generation of these fields are suitable for the application to electron beam lithography etc.
relevant to the semiconductor technology. Moreover, high power / weight ratio, high
efficiency, compact size and light weight are very promising for the future micro actuators
adopted to catheter or tele-surgery.

8.2 Classifications of Ultrasonic Motors

There are various categories to classify ultrasonic motors such as:

(1) operation: rotary type and linear type
(2) device geometry: rod type, n-shaped, ring (square) and cylinder types
(3) generating wave: standing wave type and propagating wave type.

8.3  Contact models for speed/thrust calculations

The following medels have been proposed to calculate the speed/thrust of the ultrasonic
motors:

(1) rigid slider & rigid stator,
(2) compliant slider & rigid stator,
(3) compliant slider & compliant stator.

8.4  The ultrasonic motor developments require

For the further applications of the ultrasonic motors, systematic investigations on the
following issues will be required:

(1) low loss & high vibration velocity piezo-ceramics,
" (2) piezo-actuator designs with high resistance to fracture and good heat
dissipation,
(3) USM designs;
a. displacement magnification mechanisms (homn, hinge-lever),
b. USM types (standing-wave type, propagating-wave type),
c. frictional contact part,
(4) high frequency/high power supplies.

15
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FIGURE & TABLE CAPTIONS
Table I Comparison of the motor characteristics of the vibraion coupler standing wave
type (Hitachi Maxel), surface propagating wave type (Shinsei Industry) and a
compromised "teeth” vibrator type (Matsushita).

Fig. 1 Fundamental construction of ultrasonic motors.

Fig. 2 Ultrasonic motor by Barth.

Fig. 3 Vibrator shapes for ultrasonic motors.

Fig. 4 Vibratory coupler type motor (a) and its tip locus (b).

Fig. 5 Principle of the propagating wave type motor.

Fig. 6 Torsional coupler ultrasonic motor (a) and the motion of the torsional coupler (b).

Fig. 7 "Windmill" motor with a disk-shaped torsional coupler.

Fig. 8 Piezoelectric cylinder torsional vibrator (a) and the electrode pattern (b).

Fig. 9 Two-vibration-mode coupled type motor.

Fig. 10 =-shaped linear ultrasonic motor. (a) construction and (b) walking principle.
Note the 90 degree phase difference like human walk.

Fig. 11 Motor characteristics of the n-shaped motor.

Fig. 12 Lj and Bg double-mode vibrator motor.

Fig. 13 Linear motor using a bending vibration.

Fig. 14 Vibration source positions for generating a propagating wave in a ring.

Fig. 15 Stator structure of Sashida's motor.

Fig. 16 Motor characteristics of Sashida's motor.

Fig. 17 (a) Tooth shaped stator and (b) a higher order vibration mode with a nodal line for
fixing.

Fig. 18 Construction of Seiko's motor.

Fig. 19 Disk type hula-hoop motor.

Fig. 20 "Plate-spinning" type motor by Tokin.

Fig. 21 PVDF walking mechanism.

Fig. 22 z-shaped ultrasonic linear motor.

Fig. 23 Multilayer ceramic simple linear motor.

Fig. 24 Motor characteristics of the Mitsui-Sekka motor.

Fig. 25 (a) Stator structure of the surface acoustic wave motor. (b) Slider structure of the
SAW motor.

Fig. 26 Displacement configuration of the stator of the surface wave type motor.

Fig. 27 Compliant slider and rigid stator model.

Fig. 28 Mechanical quality factor Q vs. basic composition x at vibration velocity v =
0.05 and 0.5 m/s for Pb(ZrxTi1-x)O3 + 2.1 at% Fe ceramics.

Fig. 29 Vibration velocity dependence of the resistances Rd and Ry in the equivalent
electric circuit.

Fig. 30 Temperature rise versus V¢/A (3 kV/mm, 300 Hz), where Ve is the effective
volume generating the heat and A is the surface area dissipating the heat.

Fig. 31 Efficiency and maximum output of the Shinsei ultrasonic motor for various
friction materials.

Fig. 32 Wear and driving period of the ultrasonic motor for CFRP friction material.

Fig. 33 Control methods of the ultrasonic motor.

Fig. 34 Vibration velocity dependence of the quality factor Q and temperature rise for both
A (resonance) and B (antiresonance) type resonances of a longitudinally vibrating
PZT rectangular transducer through d3;.
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Fig. 1 Fundamental construction of ultrasonic motors.
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Fig. 2 Ultrasonic motor by Barth.
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Fig. 25 (a) Stator structure of the surface acoustic wave motor. (b) Slider structure of the

SAW motor.
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COMPACT PIEZOELECTRIC ULTRASONIC MOTORS

Kenji Uchino
International Center for Actuators and Transducers
Intercollege Materials Research Laboratory, The Pennsylvania State
University
University Park, PA 16802, USA

ABSTRACT

Electromagnetic motors were invented more than a hundred years ago.
While these motors still dominate the industry, a drastic improvement
cannot be expected except through new discoveries in magnetic or
superconducting materials. Regarding conventional electromagnetic

motors, tiny motors smaller than 1cm3 are rather difficult to produce with
sufficient energy efficiency. Therefore, a new class of motors using high
power ultrasonic energy -- ultrasonic motor, is gaining wide spread
attention. Ultrasonic motors made with piezoceramics whose efficiency is
insensitive to size are superior in the mini-motor area.

This paper reviews recent developments of miniature ultrasonic motors
using piezoelectric resonant vibrations, which will be a promising candidate
for intravascular and intraureteral applications. Following the historical
background, ultrasonic motors using the standing and traveling waves are
introduced. Driving principles and motor characteristics are explained in
comparison with the conventional electromagnetic motors. Finally,
reliability issues of ultrasonic motors are described.

The ultrasonic motor is characterized by "low speed and high torque,"

which is contrasted with "high speed and low torque" of the electromagnetic

motors. Two categories are being investigated for ultrasonic motors: a
- standing-wave type and a propagating-wave type.

The standing-wave type is sometimes referred to as a vibratory-coupler type
or a "woodpecker" type, where a vibratory piece is connected to a
piezoelectric driver and the tip portion generates flat-elliptical movement.
Attached to a rotor or a slider, the vibratory piece provides intermittent
rotational torque or thrust. The standing-wave type has, in general, high
efficiency, but lack of control in both clockwise and counterclockwise
directions is a problem. An ultrasonic linear motor equipped with a
multilayer piezoelectric actuator and fork-shaped metallic legs has been
developed. Since there is a slight difference in the mechanical resonance
frequency between the two legs, the phase difference between the bending
vibrations of both legs can be controlled by changing the drive frequency.
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The walking slider moves in a way similar to a horse using its fore and hind

legs when trotting. A trial motor 20x20x5 mm3 in dimension exhibited a
maximum speed of 20 cm/s and a maximum thrust of 0.2 kgf with a
maximum efficiency of 20 %, when driven at 98 kHz of 6 V. This motor
has been employed in a precision X-Y stage. A compact ultrasonic rotory
motor as tiny as 3 mm in diameter has also been developed. The stator
consists of a piezoelectric ring and two concave/convex metal endcaps with
"windmill" shaped slots bonded together, so as to generate a coupled
vibration of up-down and tortional type. Since the component number and
the fabrication process were minimized, the fabrication price would be
decreased remarkably, and it would be adaptive to the disposable usage.
When diven at 160 kHz, the maximum revolution 600 rpm and the

maximum torque } mN-m were obtained for an 11 mm dia motor.

By comparison, the propagating-wave type (a surface-wave or "surfing"
type) combines two standing waves with a 90 degree phase difference both
in time and in space, and is controllable in both rotational directions. By
means of the traveling elastic wave induced by the thin piezoelectric ring, a
ring-type slider in contact with the "rippled” surface of the elastic body
bonded onto the piezoelectric is driven in both directions by exchanging the
sine and cosine voltage inputs. Another advantage is its thin design, which
makes it suitable for installation in cameras as an automatic focusing device.

In the development of the reliable ultrasonic motors, the following themes
should be systematically studied: 1. low loss and high vibration velocity
piezoelectric materials development, 2. piezo-actuator designs taking
account of heat generation and degradation mechanisms, 3. USM designs
including displacement magnification mechanisms and frictional contact
parts.
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Finite Element Analysis and Experimental Studies on the
Thickness Resonance of Piezocomposite Transducers

Wenkang Qi* and Wenwu Cao*-

*Intercollege Materials Research Laboratory, *Department of Mathematics, The Pennsylvania State
University, University Park. Pennsylvania 16802

Finite element method (FEA) has been used to calculate the thickness resonance frequency and
electromechanical coupling coefficient k, for 2-2 piezocomposite transducers. The results are compared
with that of the effective medium theory and also verified by experiments. It is shown that the
predicted resonance frequencies from the effective medium theory and the unit cell modeling using
FEA deviate from the experimental observations for composite systems with a ceramic aspect ratio
(width/length) more than 0.4. For such systems. full size FEA modeling is required which can provide
accurate predictions of the resonance frequency and thickness coupling constant k..

KEY WORDS: Aspect ratio; composite transducers: effective medium theory; finite element analysis;
piezocomposites. © 1996 Academic Press. Inc.

1. INTRODUCTION

A transducer is usually characterized by two major properties: sensitivity and resolution.
The sensitivity is related to the electromechanical coupling coefficient, while the resolution
is related to the center frequency and bandwidth. At the beginning of the ultrasonic
imaging industry, two types of piezoelectric materials were used as transducer materials:
lead zirconate titanate (PZT) and polyvinylidene fluoride (PVDF). PZT has high acoustic
impedance, making it very difficult to send ultrasonic energy into the human tssue, which
has very low acoustic impedance. In addition. the Q value of PZT is very high so that
the bandwidth is narrow resulting in poor resolution due to ringing effects. On the other
hand, PVDF has a very good acoustic impedance match with human tssue, but its
electromechanical coupling coefficient is very low. resulting in low sensitivity. In addition,
the low dielectric constant of PVDF also creates the problem of electric impedance
mismatch. which limits the application of PVDF in array transducers (Table I).

The advent of piezoelectric composites greatly improved this situation [1.2]. Piezocom-
posites have large coupling coefficients as well as low acoustic impedance. making them
ideal transducer materials. Nowadays, piezoelectric composites are widely used in making
underwater acoustic and medical ultrasonic transducers [2—4]. However. due to the biphase
nature and the large difference in the elastic stiffness between the polymer and the ceramic,
the surface displacement is often nonuniform [5-8]. It is therefore difficult to accurately
predict the resonance frequency of the composite transducers using simplified models.

The most commonly-used method for designing composite transducers is the effective
medium model [4]. Experience reveals that the actual resonance frequency of the designed

1 0161-7346/96 $18.00
Copyright © 1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.
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TABLE1
Material Properties of PZT and Epoxy

Elastic compliance (107'* m*/N)

s§) sk sh sty s& s
PZT 16.5 20.7 -478 -~8.45 435 42.6

Epoxy 286.7 2867 -97.9 -979 769 769

Piezoelectric constants. d,. (10~'* C/N) dielectrics constants, k,. (€o) coupling
constants. k,, and k. and densitv p (kg/m?)

dis dy diy  €/ey  €hiey Kis ky, k3 k, P

PZT 741 -274 593 1700 1470 0.675 0.39 0.75 050 7800
Epoxy 4.0 4.0 1097

composite transducer is often lower than the theoretical estimates from the effective
medium theory. Motivated by this discrepancy, we have conducted a combined experimen-
tal and finite element analysis to give a detailed assessment of the effective medium model
and to derive the conditions for the application of such theoretical estimates. We also
intended to evaluate the validity of the commonly used unit cell FEA modeling [9-11].
For simplicity, we only analyze a 2-2 composite transducer. but the conclusions are also
valid for 1-3 type composite transducers.

2. EFFECTIVE MEDIUM MODEL FOR 2-2 PIEZOCOMPOSITES

A typical 2-2 composite is shown in figure 1. It is a layered structure of alternating
polymer and piezoceramic constituents.
The constitutive relations for the polymer phase can be written as the following,

Ty = cpnSy + €12S: + €125, (la)
T, = €138 + ¢3Sa + €28, (1b)
T3 = ¢3S + ¢128: + ¢13Ss (Ic)

Piezoceramic x olymer
2

FIG. 1. Configuration of 2-2 composite investigated in this study.
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Ty = €Sy (1d)
Ts = CasSs (le)
Te = casSe 1h
D, = ¢,,E, (1g)
D, = ¢,E, (1h)
D; = ¢,E; (1i)
Here, T;and S; (1 = 1, 2, ... 6) are the stress and strain components, respectively, in

Voigt notation [12], E; and D; (i = 1, 2, 3) are the electric field and electric displacement

respectively, c;; are the elastic stiffness constants and €; are the dielectric constants.
Similarly, if we take the x;-direction as the poling direction, the constitutive relations

in the ceramic phase can be written as:

Ty = ciiSy + chSs + ¢S5 — esEs
T, = cBS; + cfiS2 + ¢3Sz — e3,Es
Ts = ¢Sy + i3S, + ¢S5 — ensEs
Ts = c&Ss — e1sE>

Ts = ciSs — eysE;

Ts = c&Ss

D, = e;sSs + €}iE,

D, = ;584 + €}1E>

D; = €35, + €3;5: + €535; — €hE;

(2a)
(2b)
(20)
(2d)
(2e)
(2D
(2g)
(2h)
(2i)

where e; are the piezoelectric constants, and the superscripts, E and S, refer to quantities
at constant electric field and strain, respectively.

We can follow the same procedure as in [4] and use all the assumptions proposed there
to derive the effective properties (denoted with an overbar) of a 2-2 composite.

— [ (¢12 — cB)
E=V|cE -V ————| +V'c
R V'cE + Ve, u
— [ (ch —c1n)
€3 =Vlen — Veyw o5 — E

L Vv Chn -+ VCH
_ -
— e3]V
s =V|ehs + —————
€ 33
33 | V'elﬁ -+ VC”
2.
- _ = €33
D = .E ==
x=cht S
€33

(3a)

(3b)

(39

(3d)
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FIG. 2. Resonance frequencies for 2-2 and 1-3 composites calculated using the effective medium theory
for different ceramic volume content.

by = ;éf (3e)

- _ 1

B3 < ;g—a €))
p=Vpt+VpP (3g)

In the above expressions. V and V'’ are the volume percentages of ceramic and polymer,
respectively, V' = 1 — V, and p® and p° are the densities of the ceramic and polymer.
Using the conventional definition, one can derive all the relevant effective quantities for
the thickness mode operation,

= hi; €33

k = = 4
( JeBiBs  cheds @

z= /) (5)

5
v, = % 6)
v
f=3 (M)

Vi and L are the longitudinal wave speed and the thickness of the composite in the poling
(x5) direction and f; is the resonance frequency givenby the effective medium theory.

Using the above equations, we have calculated the effective thickness resonance fre-
quency for a 2-2 composite of 1 mm thick. Compared with a 1-3 composite transducer
of the same thickness, the resonance frequency of a 2-2 composite is higher than that of
a 1-3 composite of the same ceramic volume content (Fig. 2). The same is true also for
the thickness coupling constant K; (Fig. 3).
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FIG. 3. Coupling constant k, calculated for 2-2 and 1-3 composites of different ceramic volume content.

Although the effective medium theory is relatively simple and sometimes gives reason-
able estimate for the resonance frequency, it fails to account for the aspect ratio effect,
which can be substantial if the a/LL (width/length) ratio is not sufficiently small [6,7]. For
systems with large a/L ratio and low ceramic content, the isostrain assumption is no
longer valid.

In addition, since a real transducer always contains a finite number of cells, one would
not expect a very good match with experimental results from a unit cell model that
automatically assuming periodic boundary conditions. For this reason, we have performed
FEA on 2-2 composite transducers using both the unit cell and full dimension models.

3. FINITE ELEMENT ANALYSIS

The nonuniform displacement at the surface of composite transducers has been observed
experimentally [5.8]. This inhomogeneity can greatly affect the overall performance of a
transducer. For low frequencies, the situation may be treated by using elasticity theory
and describing the two constituents separately. Some approximations can be used in
solving the low frequency problem since there are no significant phase differences in the
structure [6-8]. However, when the operating frequency is high and close to the thickness
resonance, we must use FEA for an accurate theoretical prediction.

A commercial package ANSYS was used in our study and two models were analyzed:
(1) A unit cell model, which was also analyzed by several other researchers [9-11]; (2)
A finite real dimensional system. These FEA results are checked against our experi-
ment results.

After some test runs, we found that the results from a 2-D model are almost the same
as those from a 3-D model for the geometry we have chosen. Therefore, for computational
efficiency, we performed only 2-D modeling. The models and the coordinate system are
shown in figure 4.

One of our objectives is to study the change of the thickness resonance frequency and
the electromechanical coupling coefficient k, with respect to the change of ceramic aspect
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FIG. 4. 2-D models used in the finite element analysis (a) unit cell model: (b) full dimension model.

ratio. Both the thickness resonance and the anti-resonance frequencies were calculated.
The resonance frequency is calculated under short circuit condition (constant E) while
the anti-resonance frequency is calculated in open circuit condition (constant D) [13).
From these two resonance frequencies. the electromechanical coupling coefficient k, can
be calculated using the formula,

K = ®

2h

Tt tan('rr(f. - fr))
2f,
where f; and f, are the resonance and anti-resonance frequencies, respectively.
First, we performed analysis on the unit cell model. Only a quarter of the unit cell is
needed due to symmetry (Fig. 4a). A composite of real dimensions was then analyzed.
Again, only a quarter of the piece was analyzed due to symmetry (Fig. 4b). The results
are plotted in figure 5 together with the experiment results.

4. RESULTS AND DISCUSSIONS
In order to verify the theoretical results, we made a series of 2-2 composite transducers

using PZT-5H and Spurrs epoxy. The dimension along the x,-axis (into the paper) is made
large enough so that the system can be treated as two dimensional. We start by making
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FIG.5. Comparison of observed resonance frequencies and theoretical predictions from the effective medium
theory, unit cell and full dimension finite element models at different ceramic aspect ratios. The widths of the
ceramic and polymer are @ = 0.273 mm and » = 0.362 mm. respectively.

a thick 2-2 piezocomposite in the x;-dimension, and later gradually increased the a/L ratio
by shortening L, i.e., shortening the x;-dimension without changing the other dimensions.
After each cutting, the sample is re-electroded and the resonance frequency measured
using a HP 4194A impedance analyzer. From the impedance curves, the resonance and
anti-resonance frequencies can be obtained, and the electromechanical coupling coefficient
k, can be determined using Eq. (8).

Another experiment was also performed to check the dimensional effect in the x;-
direction. In other words, reducing the number of cells in the composite structure to see
if it affects the resonance frequency in the x;-dimension. Impedance measurements were
also used as the means to characterize this effect.

Figure 5 shows the comparison of the resonance frequencies calculated by the effective
medium theory, unit cell FEA and real dimensional mode! FEA together with the experi-
mental results. When the ceramic ratio a/L is less than 0.4, all theoretical models agree
quite well with the experimental observations. But for a/L greater than 0.4, the effective
medium theory prediction is too high while the prediction from the unit cell FEA model
is too low. Only the real dimensional model provide accurate prediction for the reso-
nance frequency.

The coupling constant k, calculated from effective medium theory is independent of
the aspect ratio Fig. 3. However, experimental results demonstrate a fluctuation of k; with
change of aspect ratio Fig. 6. This fluctuation is mainly caused by the coupling between
the thickness mode and other lateral modes or their higher harmonics.

When the thickness, L, is reduced, the resonance frequency is shifted to higher frequen-
cies. Whenever the resonance frequency approaches one of the lateral modes or their
higher harmonics, energy will be lost to the lateral modes and the coupling constant k,
is reduced. Further increase of the thickness resonance frequency may recover some of
the lost energy through mode decoupling until reaching the next lateral mode, which
causes another reduction of the coupling constant. Therefore, we expect the k; value to
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FIG.6. Comparison of observed coupling constant k, and theoretical calculations from the effective medium
theory, unit cell and full dimension finite element models at different ceramic aspect ratios. The widths of the
ceramic and polymer are @ = 0.273 mm and b = 0.362 mm. respectively.

go up and down with the decrease in L. As shown in figure 6. this mode coupling effect
is well accounted for by the FEA. Both the unit cell model and the real dimensional model
show this fluctuating feature and the real dimensional model provides better agreement with
the experimental observations.

The difference between unit cell and real dimensional model indicate that the resonance
frequency in the x,-dimension will also depend on the composite size in the x,-dimension
(number of cells). However, this effect is weak when the a/L ratio is small.

5. SUMMARY AND CONCLUSIONS

We have performed both experimental and FEa investigations on the resonance fre-
quency of a 2-2 piezoelectric composite transducer and compared with the effective
medium theory estimation. It is found that the effective medium theory gives good estimates
when the a/L ratio is less than 0.4, but the calculation of the coupling constant is incorrect
whenever the thickness mode gets close to one of the lateral modes. When the a/L ratio
is larger than 0.4, the effective medium theory prediction will be higher than the actual
resonance frequency of the composite transducer. The FEA results depend strongly on
the details of the model. Unit cell modeling seems to underestimate the resonance frequency
for composites with large a/L ratio but the fluctuation of k, can be reasonably predicted.
The most accurate modeling is the real dimensional FEA, which gave good predictions
for both resonance frequency and coupling constant for all aspect ratios investigated.
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Finite element study on random design of 2-2 composite transducer
Wenkang Qi and Wenwu Cao

Whitaker Center for Medical Ultrasonic Transducer Engineering
Materials Research Laboratory
The Pennsylvania State University, university park, Pennsylvania, 16802

ABSTRACT

Random 2-2 composite transducers are studied using FEM(ANSYS®). Admittance curves as well as beam patterns in the
nearfield are calculated and used to evaluate the performance of random 2-2 composite designs. First, the pressure and the normal
velocity distributions at the interface of water and transducer are calculated using ANSYS, then, these pressure and velocity data
are used to calculate the beam pattern using Helmholtz integral. Different random configurations are studied and the results are
discussed.

Keywords: ultrasound, transducer, composite, piezoelectric, FEM.
1. INTRODUCTION

Piezoelectric composite has advantages over single phase piezoelectric ceramics and polymer materials for transducer
applications!!-6. It has lower acoustic impedance than that of ceramic, higher electromechanical coupling coefficient and lower
Q than that of pure ceramic and much higher sensitivity than the piezoelectric polymer. But at high frequencies, its periodic
structure causes spurious lateral modes. which interfere the thickness resonance. The coupling of these lateral modes with the
thickness mode will reduce the thickness electromechanical coupling coefficient and prolong the ringdown. Conventional method
to eliminate the coupling is to reduce the pitch size so that the lateral resonance is pushed up to twice of the thickness resonance
frequencyl”). However, the thinnest blade of a diamond saw available now is around 20 microns, which limits the frequency
range of the composite transducers made by dice and fill technique to less than 20 MHz.

It is shown that the lateral resonance may be destroyed by introducing randomness into the composite structure{8-10], In this
paper, we further investigate this idea by introducing randomness into the polymer phase in low ceramic percentage composite.
Various random patterns have been tested, and the beam pattern in the nearfield is studied by using ANSYS® combined with
direct integration of the Helmholtz equation{!1],

2. RESONANCE MODES IN 2-2 COMPOSITE

Fig.1 shows the thickness mode [Fig.1(B)] and the lateral mode(Fig.1(C)]. This lateral mode shown in Fig 1(C) is the first
lateral pitch resonance, in which the ceramic and polymer constituents are vibrating out of phase. This transducer is designed to

have 44% PZT ceramic and the filler is spurs epoxy. The dimensions are: thickness 1.12mm, ceramic width 0.273mm, polymer
width 0.362mm.

- w—

resonance mode at |.5M

Fig.1

SPIE Vol. 3037 e 0277-786X/97/$10.00
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Fig.2 (a) and (b) are admittance curves from ANSYS calculation and experiment, respectively. The two peaks represent the
thickness and the pitch resonance, respectively. We can see that the two modes strongly couple to each other in this design. In
this case, the thickness coupling coefficient is rather low, k, = 0.5.

In order to suppress the pitch resonance, we randomize the width of the kerfs which are filled with polymer. Fig. 3 shows the
admittance curve for the case of 100% random kerf width. Although the electric admittance of random composite shows
encouraging results, we need to further examine the performance of this random composite by considering the beam pattern.
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Fig.2 (a) The admittance curve of a 33 layer periodic 2-2 composite calculated by FEM.
(b) The measured admittance curve of a 33 layer periodic 2-2 composite.
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Fig.3 The calculated admittance of a 33 layer random 2-2 composite using ANSYS®

3. BEAM PATTERN

In medical imaging, we are interested in the beam characteristics in vicinity of the focal point, which is different from sonar
applications. In order to accurately calculate the beam pattern, we have to consider the effect of water loading. This can be
accomplished by using Fluid Structure Interface element in ANSYS®. Harmonic analysis using FEM can provide pressure
distribution as well as normal velocity distribution at the interface. These distributions will then be used to do the Helmholz
integral to calculate the nearfiled beam pattern. Since the Green's function and its derivative have some singularity points at the
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integration surface, we can not do the integration in the original coordinate plane. Coordinate transformation has been performed
to resolve the singularity problem. This procedure has been applied to calculate the beam pattern for the random composite
transducer and the result is shown in Fig. 4.

Fig.4 The beam pattern of a 33 layer random composite transducer immersed in water.

One can see several problems with this design: First, because the transducer is not symmetric in the x-direction, we lose the
symmeury of the beam pattern. This is not desirable in medical imaging application since it causes imaging distortion. Second,
although theoretically we can randomize the kerf, it is not feasible to dice with too many different kerfs in practice. Third, the
beam width is wider than that of a periodic composite transducer. which means this design will not have better lateral resolution.

The first problem can be overcome by introducing symmetry in the x-direction while keeping the random kerfs in half of the

composite. The beam pattern produced by the symmtrized random composite is shown in Fig.5. We can see that the beam
pattern becomes symmetric again.

Fig.5 The nearfield of the random composite with symmetry in the x-direction.

However for the second and third problem, we have to investigate other random designs. From FEM study, we found that it
is not necessary to randomize every kerf, instead, a repeated sequence of different size kerfs can give reasonable reduction of the
lateral mode. Figs. 6(a-¢) are admittance curves of 2-2 composites with 33 cells and different sequential kerf configurations
[Note that all the configurations have symmetry in the x-direction to keep the beam pattern symmetric].

In Fig.6(a), the first 16 kerfs are randomly chosen with a fixed volume percentage of ceramic, while the last 16 kerfs are
obtained from mirror symmetry of the first 16 kerfs. The 17th is set equal to the first one. In Fig.6(b), the first 5 kerfs are
randomly chosen, then repeat this pattern 3 times, the 16th is the same as the first one and the 17th is the same as the second.
The other 16 kerfs are mirror symmetry of the first 16. In Fig.6(c;. the first 4 kerfs are random, and the pattern is repeated 4
times, while the 17th is equal to the first. The other 16 kerfs are mirror symmetry of the first 16. In Fig.6(d), the first 3 kerfs are
random, and then repeat this pattern 5 times, the 16th is equal to the first. while the 17th is equal to the second. In Fig.6(e), the
first 2 kerfs have different sizes, and then the pattern is repeated 8 times, the 17th is equal to the first. The other 16 kerfs are
mirror symmetry of the-first 16.
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As we can see in Fig.6(a), the admittance curve is almost the same as that in Fig. 3, in which every kerf size is randomly
chosen, except there is a small bump around 1.2MHz. Interestingly, as we reduce the sequential random number from 17 down t0
3, liude change occurred for the admittance curve. However, when the sequential random number becomes 2, there is a new lateral
mode showing clearly in the admittance curve as shown in Fig. 6(e).
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(c) Sequential number is 4; (d) Sequential number is 3;
(e) Sequential number is 2.
As mentioned above, we can not use the admittance curve as the sole criterion, the beam pattern must also be investigated for
designing random 2-2 composite transducers.
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In Fig.7. the pressure profiles near the focal point were compared for three different sequential numbers 3, 4, and 5. The beam
width shows little change. Therefore, there are not much advantages for making higher sequential number composite transducers.
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Fig.7 Pressure profile near the focal point for sequential number 3,4,5, respectively.

4. CONCLUSION

In a periodic 2-2 composite transducer, lateral modes are produced and they will couple to the thickness mode for high frequency
operation. This coupling effect and the manufacture difficulties limit the current frequency range of composite transducer to less
than 20 MHz. We show that these lateral modes may be suppressed through randomization of kerf width [3-4]. However, FEM
analysis shows that the randomization will introduce distortion to the beam pattern. In order to maintain the symmetry of the
beam pattern, it is necessary to keep the 2-2 composite structure symmetric in the x-direction.

From practical point of view, it is not feasible to randomize every kerf in a 2-2 composite due to production difficuities. A
series of composites with sequential kerf width are explored using FEM. From the calculated admittance curves, the lateral mode
can almost be suppressed when the sequential number is 3 or 4. By looking at the nearfield beam pattern, the sequential number
3 is preferred. It is also easier to fabricate for low sequential number than for higher sequential numbers.
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Evaluation of Piezocomposites for Ultrasonic
Transducer Applications—Influence of the Unit
Cell Dimensions and the Properties of
Constituents on the Performance

of 2-2 Piezocomposites
Xuecang Geng and Q. M. Zhang

Abstract—A theoretical model on piezoceramic polymer
composites with laminar periodic structure is presented. A
salient feature of this model is that it can treat explicitly
how the unit cell dimensions and other material properties
influence the performance of an ultrasonic transducer made
of 2-2 piezocomposites. The model predicts that there exist
a series of modes associated with the periodic structure of
a composite, which is beyond the stop-band edge resonance
prediction. One of the main concerns in designing a compos-
ite transducer is how the surface vibration profile changes
with frequency and how this is influenced by the aspect ra-
tio of the ceramic plate. It was predicted that as long as
the thickness resonance is below the first lateral mode fre-
quency, there is always a frequency f; which is near the
thickness resonance and at which the polymer and ceramic
vibrate in unison. The effect of aspect ratio is to change the
position of f; with respect to the thickness resonance fre-
quency and the bandwidth in which polymer and ceramic
have nearly the same vibration amplitude and phase. It is
also predicted that, when operated in a fluid medium such
as water, there will be a resonance mode which has a fre-
quency determined by the velocity of the fluid medium and
the unit cell length d and is associated with the oscillation
of the fluid. The behavior of a composite plate as an acous-
tic transmitter and receiver and the influence of the aspect
ratio of the ceramic plate on them are ailso investigated.

I. INTRODUCTION

O PRODUCE 2 high performance ultrasonic transducer
Trequires the transducer material. which performs the
energy conversion between the mechanical form and elec-
trical form. to have a high electromechanical coupling fac-
tor, broad operation frequency bandwidth. and adjustable
acoustic impedance which can be tuned to match that of
the medium. Witk single phase piezoelectric materials, it
is difficult to simuitaneously meet all the requirements.
Piezoceramic polymer composite materials. which combine
the high electromechanical activity of piezoceramics and
the low acoustic impedance of polymeric materials. have
provided new opportunities to meet these requirements (1},

Manuscript received August 27, 1996: accepted January 14, 1997.
This work was supporzed by the Office of Navai Research under the
Grant No: N00014-96-0357.

The authors are with Materials Research Laboratory and Depart-
ment of Electrical Engineering, Pennsylvania State University, Uni-
versity Park. PA 16802 (e-mail: qxzl@psuvm.psu.edu).

[21. Since their inception in the seventies, the piezoceramic
polymer composites have become one of the most impor-
tant transducer materials and are being widely used in
many areas such as medical imaging, nondestructive eval-
uation of materials, underwater vision. etc.

Being a diphasic material, the properties of a piezo-
composite can be tailored over a wide range by adiust-
ing the material properties and geometric shapes of con-
stituent phases (3], [4]. It has also been observed that the
properties of a composite vary with frequency [5]. The
challenge of understanding the seemingly complex rela-
tionship between the performance of a composite and the
properties of its constituents and the great opportunities
provided by these materials have stimulated, in the past
two decades. extensive investigations. both experimental
and theoretical. on this class of materials.

The classic work of Newnham et al.. [6] which classi-
fied piezocomposite materials according to the connectiv-
ity of the constituent phases, has greatly facilitated the
analysis of the composites as the connectivity is one of
the key parameters in determining the performance of a
composite. For composites with 1-3 and 2-2 connectiv-
ities. both analytical and finite element modelings have
been carried out which have provided useful guidelines in
the design of composite transducers [7i~{13]. The isostrain
models developed by Smith and Auld :3] and Hashimoto
and Yamaguchi [4] linked the material parameters of the
constituents to the effective piezoelectric properties of 1-3
and 2-2 composites, respectively, and predicted that the
thickness coupling factor &, of a composite can approach
the longitudinal coupling factor k%, of the piezoceramic
rod and k% of the plate, respectively. which is in good
agreement with experiments for composites with a high
aspect ratio ¢/d. where ¢ is the thickness and d is the peri-
odicity of the composites. Auld et al. [7]. using the Floquet
theory. investigated wave propagations in both the 2-2 and
1-3 composites and showed that, due to the periodic struc-
ture of these composites, there exist pass bands and stop
bands. similar to the band structure in a crystal solid, and
that there are piezoelectric resonances associated with the
stop band edge resonances (7]-[10]. For the design of com-
Posite transducers. the recognition of the existence of these
modes and the precise prediction of their frequencies are of

0335-3010/97810.00 © 1997 IEEE
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prime importance since, quite often. it is the interference of
these modes with the thickness mode of a composite that
deteriorates the performance. especially at high frequency
operations. Craciun et al. [11] examined the coupling be-
tween these lateral modes and thickness mode using a phe-
nomenological approach, and the results provided qualita-
tive understanding between the coupling of the two modes
and the material properties. The results from these inves-
tigations have played important roles in the development
of ultrasonic composite transducers. However, due to the
approximations used in the analvsis. there are severe lim-
itations. For instance, various features related to the dy-
namic behavior of a composite transducer were not treated
in a consistent manner, and the effect of finite thickness
of a composite on the material properties. that has been
shown to be crucial in determining the performance of a
piezocomposite, cannot be treated in these analyses. To
address these realistic issues of a composite material, fi-
nite element analysis has been emploved by many authors
(12]-[13]. For example, the dispersion curves have been
evaluated for various modes in a composite and the de-
pendence of the electromechanical coupling factor on the
ceramic volume content and the ceramic rod shape was
investigated.

For a piezoceramic polymer composite, it has to be
recognized that it is the ceramic phase which performs
the energy conversion between the electric and mechani-
cal forms and the polymer phase merely acts as a carrier
which transiers acoustic energy berween the piezoceramic
and the external medium. Hence. if the elastic coupling
between the two constituents is not very effective, even if
the material exhibits a perfect acoustic impedance match-
ing with the medium and the electromechanical coupling
factor is large. the electromechanical performance of the
material is still poor. These observations clearly indicate
that in modeling piezoceramic polymer composites. one
cannot simply use an effective medium approach and has
to take into account explicitly this internal degree of free-
dom.

Recently. we developed an analyvtical model on the dy-
namic probiem of a piezocomposite material with the 2-2
connectivity '16]-[18]. In the model. we avoided the ap-
proximations made in the earlier works and. hence. can ad-
dress the dxnamic responses of 2-2 piezocomposites. such
as the frequencies of various modes. the mode coupling,
the electromechanical coupling factor. the vibration pro-
files of composites under different external driving condi-
tions. etc.. in a realistic and consistent manner. For exam-
ple, one of the misconceptions in the early studies of the
dynamic benavior of piezocomposites is the direct link-
age between the non-uniform surface vibration profile in
a composite and the aspect ratio of the ceramic plate (in
2-2 composites) or rod (in 1-3 composites). Here. we will
show. which was verified by experiment. that for a com-
posite plate. as long as the thickness resonance frequency
is below that of the lateral mode. there is alwavs a fre-
quency near the thickness resonance where the vibration
profile of the composite is uniform. The influence of the
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Fig. 1. (a) Schematic drawing of a 2-2 piezoceramic polymer com-
posite which is unbounded in all three orthogonal directions. The
period of the composite is d. (b) Schematic drawing of a 2-2 piezo-
ceramic polymer composite plate with a thickness ¢ situated in air.
An external voltage is applied to the composite.

aspect ratio is on the frequency bandwidth in which the
polymer and ceramic vibrate in unison.

The approach taken here to solve the vibration problem
in a finite thickness composite plate is based on the method
of partial wave expansion where the various elastic and
electric fields are expanded in terms of the eigenmodes of
the strucrure as shown in Fig. 1(a) and the coefficients for
each eigen-mode are determined by the boundary condi-
tions at z3 = t/2 [Fig. 1(b)]. Some of the results have been
presented in early publications. In this paper, we would like
to summarize briefly these earlyv results and then. discuss
many issues pertinent to the design of piezocomposite ul-
trasonic transducers based on the results from the model
analysis. The paper is organized as the following: First,
the details of derivation of the eigenfunctions for a 2-2
piezoceramic polymer composite will be presented. Based
on the results, the wave propagation in an unbounded 2-2
composite is analyzed. For the finite thickness composites,
various features of a piezocomposite plate under an ex-
ternal driving electric field in both air and water media
are treated. The response behavior of the composite plate
under external pressure is also treated. Experiments were
conducted to provide comparison with the theoretical re-
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sults. From the results, we will show explicitly how the
aspect ratio t/d influences the transduction performance
of a composite plate.

II. GENERAL SOLUTIONS FOR WAVE PROPAGATION IN
A 2-2 PIEZOCOMPOSITE

Shown in Fig. 1(a) is a schematic drawing of a 2-2 com-
posite (unbounded in the zs-direction), where plates of
piezoceramic and polymer form a parallel array. The coor-
dinate system is chosen such that the z3-axis is along the
ceramic poling direction, the zy-axis is perpendicular to
the ceramic polymer interface, and To-axis is in the plane
of the plates. For a typical 2-2 composite. the dimensions in
the z,- and zo-directions are much larger than the period
d and thickness t. In the treatment here. they can be taken
as infinite without much error in the results. Under these
conditions, the composite is clamped in the zo-direction
so that Ss = 0. where S is the strain in the zo-direction,
and the problem becomes a two-dimensional one with no
dependence on the ZIo-coordinate.

The governing equations for the dynamics of a 2-2 com-
posite are [19]-{21%

oT | 0T _ Fu

oz, 0Oz3 P o

3T5 6T3 _ 32U3

0z, + 6.’123 =° ot? (1)
oDy D5 _

61‘1 61:3 -

The symbols adopted in this paper are summarized here:
T: and S; are the stress and strain tensor components,
where the Voigt notation is used, u; is the elastic displace-
ment vector, p is the density. and D; is the electric dis-
placement vector. E; is the electric field. The relevant ma-
terial coefficients are: e;; is the piezoelectric coefficient, ci;
is the elastic stiffness, and &; is the dielectric permittiv-
ity. Equation (1} holds for both ‘the polymer and ceramic
phases.

The constitutive equations, relating stress T, strain S,
electric displacement D, and electric field E, are:

T = [cF][S] - [ed[E]
D] = [¢][S] + [°)(EL-

(2a)
(2b)

For the polymer phase, ek; in (2) are zero. The super-
scripts E and S indicate that the coefficients are under
the constant E field and constant strain conditions, re-
spectively. Here le,] is the transposed [e] array. Under the
quasi-electrostatic approximation, the electric field E can
be expressed as:

E=-V® (3)

where @ is the electrical potential.
Combining :1). (2). and (3) yields three second order
differential equations, governing the elastic displacement
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uy, us, and electric potential @ in the ceramic plate, re-
spectively:

E E |, .E E
crusa1 + (e + C43)U1,13 + €33U3,33

+(e33® 33 +€152,11) = plia
cBurn + (¢ + cEuaas + chiu13s
+(e31 + €15)®,13 = plia
e15u3.11 + (€15 + €31)u1,13 + €33U3.33
—(€§3¢v33 + Eflé,ll) =0.

(4)

For the polymer phase, e;; in (4) should be taken to zero.
. For an unbounded composite, the solutions to (4) have
the form: :

uz = Aexp(j(hzy + B3 —wt))
u; = Bexp(j(hzy + Bz3 —wt))
& = C exp(j(hzy + Bz3 — wt)

(5)

where A. B, and C are three constants, w is the angular
frequency, h and J3 are the wave vector components in the
z,- and z3-directions, respectively.

Substituting (5) into (4) yields three homogeneous
equations with the undetermined constants A, B, and C,

[Mi;)[A:] =0 (6)
where [4;] = {4, B,C|T and
£, B -pu?  (chrcE)RI  exflteish?
M) = (E+cEYhE  cEhI+ch i -ps®  (eistea)hd
eas 3% +eysh® (e1s+es1)hd —(e5,h?+€3:8%)
(M

The condition for a nontrivial solution is such that the
determinant of the coefficient matrix vanishes, i.e.,

|M;;] =0 (8)
Equation (8) is a cubic equation of h2. For a given w and
B. (8), in general, has three roots of h2, denoted as hf,
hS. and hj. corresponding to the quasi-electromagnetic,
quasi-longitudinal, and quasi-shear waves in the piezoelec-
tric plate, respectively. For each h¢, the ratio among A, B,
and C can be determined from (6). Since we are concerned
only with the waves in the z3 direction which correspond
to piezo-active modes in a finite thickness composite plate,
the general solutions become:

u§ = 3, REf? cos(him) sin(Bzs)

ui = Z ngf sin(hfxl) COS(ﬁ-TS) (9)

®° = Y Rgt§ cos(h{zy) sin(zs)

1

where i runs from 1 to 3. fi, gi and t; are the cofactors of
Ak (7). Aga(i), and Ay (i) of the determinant (8) (where
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h is replaced by h¢ for i = 1, 2, and 3, respectively). The
exp(—jwt) term in (9) is omitted.

Following the similar procedure. the solutions for the
polymer phase can be obtained (the center of the polyvmer
plate is at r; = d/2):

uf = ZR{"L—P cos (hf (1'1 - g)) sin(Bz3)
uf = ‘Zngf sin (h,P (zl - g)) cos(Bz3)

&P = CP cosh (,8 (1:1 - g)) sin(8z3)

(10)

where i = 1. 2. fP and gP are the cofactors of A ().
Ak2(i) of the determinant (8) with all the material param-
eters replaced by those of the polymer phase, and

(RD)* = (K2)? - 6° and (R3)? = (k2)? - B

-;—*;y, k; = 4. uf, and V; are the longi-

where kP =
L T
tudinal and shear wave velocities of the polymer phase.
respectively.
The expressions of the stresses and the electric displace-
ment in the ceramic plate can be obtained by substituting

(9) into (2):

Tf = > TS()RE cos(hC ;) cos(Bzs)

If = ZTﬁ(i)RiC cos(h?rl)cos(ﬂxg) (11)
IS = 3 TS ()RS sin(h ) sin(Bzs)
[}
where
TGH(i) = cihCgl + (e fE + es1tC)B
T5(0) = e3hCgf + (ch € + e5t€)3 (12)

T5i(i) = ~c£(B€ + hC£C) — e15hCeC

where i = 1. 2. 3 for ceramic phase. The electric displace-
ments are:

Df =" DE(i)RC sin(hC z,) sin(Bz,)
i (138.)

D§ = 3" D§(i)RE cos(hCz,) cos(Bz;)
i (13b)

where D' (i) = —e;5(8g€ +hC fE)+£5\hCtC and DS (i) =
ea1h{ gl + e333fC — €5,8C. Similar expressions can be
obtained for the polymer plate. For instance, the electric
displacements are:

DP = —sﬁBCP sinh (/.’3 (J.‘l - g)) sin(J3z3)
(14a)

Df = —<F BCP cosh (B (xl - g)) cos(Br3)

(14b)
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Making use of the boundarv conditions at the ceramic
polymer interface(r; = vd/2. where v is the volume frac-
tion of the ceramic in a composite), which are:

uf = uf,uf =uf . TC = TP and TS = T
(15a)

and ¢ = ¢” and D¥ = pP (15b)
RE. Rf and CP. (i=1.2. 3 and J =1.2) can be deter-
mined. Expanding (15) in terms of (9). (10). (11), (13). and
(14) yields the following six homogeneous linear equations:

Au R K3 Ky Kys 0
K21 Ry Koz Koy Kas 0 4
K31 K3z K33 K3, K35 0

B[
Ki Koo Kis Ky Kys 0 RS (16)
0 0 Ks3 Ky Kss K | | RE
0 0 HAg3 Ky Kgs R cr

where the matrix elements K,; are functions of 4. w, d.
v. and the material parameters of both the polymer and
piezoceramic. The condition that the determinant

|Kijl=0 (17)
vields the relationship between » and B, the dispersion
relations in the composite. For each pair of w and 3. the
relationships among RC, RP. and CP can be obtained.
Hence. the various stress. strain. electric field distributions
in the composite can be determined.

II1. DisPERSION CURVES. MoDEs. AND MODES
COUPLING OF A 2-2 PIEZOCOMPOSITE

Equation (17) allows us to determine the relationship
between 3 and w. the dispersion curves. for a composite
if the marterials parameters of piezoceramic and polvmer
and the geometric parameters. such as d and v, are known.
Equation 717) is a transcendental function which cannot
be solved analytically. A computer code was developed and
the dispersion curves were evaluated numerically.

Shown in Fig. 2 (the solid curves) are the two lowest
branches of the dispersion curves for a 2-2 composite made
of PZT-5H piezoceramic and Spurr epoxy with the ceramic
volume fraction of 44%.! For all the composites discussed
in this paper. except otherwise specified. PZT-5H piezoce-
ramic and Spurr epoxy are used as the constituents. The
parameters of PZT-5H and Spurr epoxy are presented in
Table I. The general trend of the dispersion curves in Fig. 2
resembles that of the symmetric Lamb waves in a plate
{19]. As will be shown later. at small Ad limit, the first
branch corresponds to the longitudinal wave propagation
along the r3-direction. that is. u3 is the dominant displace-
ment which is more or less uniform and in phase in the z,-
direction. and its phase velocity is the effective longitudinal

'PZT-5H is the trade-mark of Morgan Mattroc Inc.. Beddford. OH
+136. for one of its PZT piezoceramics. Spurr epoxy is the trade-
mark of Pclysciences, Inc.. Warrington. PA 18976.
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Fig. 2. The first and second branches of the dispersion curves (solid
lines) and the experimentally measured thickness mode (solid circles)
and lateral mode (open circles) for a 2-2 composite made of PZT-
5H and Spurr epoxy with 44% ceramic content. After the crossover
region, the thickness mode jumps to the second branch. The criterion
for the thickness mode is that it is the one with the larger effective
coupling factor.

TABLE I
THE MATERIAL PROPERTIES OF PZT-5H AND SpURR EPoxy USED
FOR THE 2-2 COMPOSITES IN THE INVESTIGATION.

PZT-5H: e3s = 23.09 C/mz, e33 = =—6.603 C/mz. els =
17.0 C/m2. c11 = 12.72 % 10® N/m?, cy3 = 2.3» 1019 N/m?2,
c33 = 11.74 % 101 N/m?, ¢13 = 8.47 » 1010 N/m?, K13 = 1700,
K33 = 1470. p = 7500 kg/m?3.

Spurr epoxy: €11 = 3.4 * 10° N/m?, ¢33 = 1.3 » 10° N/m?, p =
1100 kg/m3.

wave velocity of the composite. The second branch corre-
sponds to the lateral resonance which arises from the pe-
riodic structure of the composite, that is. it is a stationary
shear wave along the z;-direction. and it can be shown that
the displacement uj of the polymer phase is much larger
than that of the ceramic phase and the phase difference
between them is 180°. Hence, it is the so-called stop-band
edge resonance as predicted by Auld et al. [7), [8].

Under the assumption that the wave length X in the
z3-direction (3 = 27/]) is equal to two times the compos-
ite thickness t (the condition for the thickness resonance),
the theoretical dispersion curves can be compared with
the experimental results, obtained from composites with
different thickness. At low Ad on the dispersion curves,
where d is the period of the composite. the frequency of the
fundamental thickness mode from the experiment falls on
the first branch as marked by the black dots. and the fre-
quency of the first lateral mode falls on the second branch
as marked by the open circles. After the crossover region
B, the modes interchange the positions on the dispersion
curves where the thickness mode is in the second branch
while there is a weak resonance at a frequency below the
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Fig. 3. The dispersion curves for a 2-2 composite [Fig. 1(a)] made of
PZT-5H and Spurr epoxy for (a) 15% ceramic volume content and
(b) 44% ceramic volume content.

thickness mode, and it falls on the first branch. Here, the
thickness mode is defined as the one with higher electrome-
chanical coupling factor. The mode on the first branch
gradually diminishes at high (d values. The result is pre-
sented in Fig. 2. Clearly, there is an excellent accord be-
tween the theoretically derived resonance frequencies and
experimentally observed ones.

Shown in Figs. 3(a) and 3(b) are the 3-dimensional
dispersion curves for 2-2 composites with 15% and 44%
ceramic volume fraction, respectively. Obviously, there
are imaginary and complex branches of the dispersion
curves. The modes on these branches are non-propagating
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Fig. 4. The effect of the properties of the polvmer matrix on the dis-
persion curves of 2-2 composites with PZT-S5H ceramic, derived from
the model. The properties of the polymer phase are: curve 1: ¢;; =
T.72 » 10% N/m?, cis = 1.588 « 10° N/m?, p = 1160 kg/m3:
curve 2: ¢;; = 1.3634 = 10'% N/m?, ¢y = 3.432 » 10° N/m2.
p = 1610 kg/m3; curve 3: ¢;1 = 3.173 ¢ 109 N/m?, cys = 0.696 =
10° N/m?. p = 1060 kg/m3: curve 4: ¢;; = 1.622 » 10° N/m?.
€43 = 1.646 = 108 N/m?, p = 890 kg/m3.
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modes (imaginary branches) and attenuated modes (com-
plex branches), respectively. These modes do not exist in
an unbounded composite. however. they are important in
the vibration problems of finite thickness plates as well
as in semi-infinite mediums. where they correspond to the
evanescent waves at the surface which will be discussed
later in the paper.

Fig. 4 presents the effect of the stiffness of the polymer
phase on the dispersion curves of a 2-2 composite with
30% ceramic content where PZT-5H is used as the piezo-
ceramic phase. It is apparent that the frequency position
of the second branch is very sensitive to properties of the
polymer phase. This is quite understandable since. as will
be shown later, the frequency position of this branch is
directly related to the shear velocity of the polymer ma-
trix for composites at this ceramic content. The lower the
shear wave velocity of the polymer phase is. the lower the
frequency of the second branch will be. Therefore. for a
transducer operated at high frequencies. in order to avoid
the interference from the lateral modes. a polymer matrix
with a high shear velocity should be utilized even though
the thickness coupling factor £, of this composite mayv be
reduced as a result of the stiffer polymer matrix 3}. [4].

In order to further elucidate the origins of these res-
onant modes, it is instructive to make a comparison be-
tween the dispersion curves of a composite and those of

single piezoceramic and polymer plates with appropriate -

boundary conditions (22]. In general. in piezoceramic poly-
mer composites, the elastic stiffness of the piezoceramic is
more than one order of magnitude higher than that of the
polymer. It is reasonable to assume that the piezoceramic
plates in a 2-2 composite are stress free at the ceramic-
polymer interface. that is. the stress components T} and T
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Fig. 5. Comparison of the dispersion curves in 2-2 composites with
those in a single piezoceramic plate and a polymer plate for compos-
ites with (a) 15% ceramic content: (b) 44% ceramic; and (c) 80% ce-
ramic content. PZT-5H is used as the piezoceramic and Spurr epoxy
as the polymer phase.

are zero at the interface. Similarly, the polymer plates can
be approximated as under the fixed boundary conditions.
that is. u; and uj3 are zero at the interface. Under these
assumptions, the dispersion curves of both single ceramic
and single polymer plates are calculated for the plates with
different widths corresponding to 2-2 composites with dif-
ferent ceramic volume fractions. The results are presented
in Figs. 5(a), 5(b), and 3(c) corresponding to 2-2 compos-
ites with 15%. 44%. and 80% ceramic content, respectively.
In these figures, the solid lines are the dispersion curves of
the 2-2 composites. the dashed lines are those of the ce-
ramic plate, and dotted lines are the dispersion curves of
the polvmer plate.
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Th= results from these figures reveal that there are
many resemblances between the dispersion curves of 2-2
composites and the dispersion curves of the single ceramic
and single polymer plates with appropriate boundary con-
ditions. For instance, at small 8d, the first branch in the
dispersion curves of the 2-2 composites with 44% and 80%
ceramic volume content is very close to the first branch of
the ceramic plate. On the other hand, for 2-2 composites
with low ceramic volume content, a large difference be-
tween these two is found for the first branch. These results
are consistent with those from Smith and Auld {3] and
from Hashimoto and Yamaguchi [4] based on an effective
medium model. For the second branch which corresponds
to the lateral resonant mode in a composite plate, at low
and medium ceramic volume content. it is close to the first
branch of the polymer plate which frequency at small Ad is
equal to V}’ /2dp where V-}D and dp are shear wave veloc-
ity and width of the polymer plate, respectively. However,
for composites with high ceramic volume content such as
the one shown here (80%), the second branch is related to
the longitudinal resonance of the ceramic plate along the
width- (or z;-) direction while the shear resonance asso-
ciated with the polymer plate lies on the third branch of
the dispersion curves.

Obviously. the coupling between the two phases through
the interface boundary conditions will influence the disper-
sion curves of the waves in the two phases. It is well known
that the dispersion curves for the uncoupled waves are split
at their crossover points when coupling is introduced [11].
Far from the crossover region, the coupled wave dispersion
curves should nearly coincide with those of the uncoupled
waves. If the coupling is very strong as for the 15% and
44% piezocomposites, the coupled waves exhibit large de-
parture from the uncoupled curves in the crossover region,
which is clearly shown in Figs. 5(a) and 5(b). While for the
composite with 80% ceramic content. the coupling between
the first and the second branches is through the coupling
of P wave and SV wave in the ceramic plate where the
interface does not have a significant effect on it.

IV. VIBRATION OF A FINITE THICKNESS COMPOSITE
PLATE UNDER AN ELECTRIC FIELD IN AIR

In the previous section, the properties of guided wave
propagation in laminated 2-2 piezocomposites have been
analyzed. In spite of the fact that many effective parame-
ters of the marerial can be derived by this simple method,
one key issue in the design of a composite transducer, i.e.,
the influence of the aspect ratio of the ceramic plates (or
the unit cell) in a composite on the performance of the
transducer cannot be addressed. In this section. we will
treat the vibration problem of a finite thickness composite
plate under an external driving electric field and situated
in air. From the analysis, one can obtain detailed infor-
mation on how the surface vibration profile changes with
frequency and its dependence on the aspect ratio of the
ceramic plate (or the unit cell dimension), the possible
resonant modes in a composite transducer, and the de-
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pendence of the electromechanical coupling factor on the
aspect ratio of the ceramic plate, etc. We will also show
that, as long as the thickness resonance frequency is below
the lateral mode frequency, the aspect ratio will not have
a direct effect on the vibration uniformity of a compos-
ite near the thickness resonance. The influence is on the
bandwidth in which the ceramic and polymer vibrate with
nearly the same amplitude and phase.

A composite plate with a thickness ¢ is drawn schemat-
ically in Fig. 1(b). For the problem treated here, the two
free surfaces of the composite plate are electroded with
conducting material and an AC electric field of a frequency
f is applied between the two electrodes.

It is well known that there exist no simple solutions for
the vibration problem of a finite thickness plate such as the
piezocomposite treated here. One of the most frequently
used approximation methods is to expand the elastic and
electric fields in a material in terms of the eigenfunctions
in an unbounded one [21]. Different techniques such as the
variational technique and the method of least squares can
be used to determine the expansion coefficients. For the
composite plate treated here, we found that the variational
technique is more appropriate in treating the boundary
problem than the method of least squares because of the
large difference in the vibration amplitudes between the
two phases in the composite.

For the ceramic phase in the composite plate, the elastic
displacements u3 and u;, and the electric potential & are
expended in terms of the eigenfunctions derived:

3

u§ = Z Z R, £C, cos(hS;z1) sin(3nz3) An
n=1 i=l
m 3

uf = Z Z RE,gS, sin(h;z1) cos(3nz3) An

3
n

+ CRg sin(h§;z1) (18)

Z Z RE.tS. cos(hS,z, ) sin(3,23)An + Cz3.

n=1 i=1

Similarly. for the polymer phase in the composite plate:

U3 —ZZR Pcos(hp(

n=1 i=1

ESY Z RE.gF. sin (h,‘,’,- (11 - é)) cos(Bnz3)An

n=1 i=]

+ CRE sin (h{,’l (:z:1 - g))

o7 Z C’P cosh (B,. (:2:1 - g)) sin(Bnz3)An + Cz3

n=1

where RS,. RS,. RS, RP,. RE,. and CP are determined
in (16). 3. hS,. and AL, a.re the wave vector components
of the nth mode in the z3- and r;-directions where the
superscripts ¢ and p stand for the ceramic and polymer,
respectively. h§; and hf, are related to the mode in which

- ) ) sntenza)a,

(19)
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B is equal to zero: K, = \/-f_gw and hf, = \/;ﬂ?w. R§
and R} are determined by (16) in which [ is set to zero.
The mode with 3 = 0 is generated due to the fact that
the velocity of the electromagnetic wave is much faster
than that of the elastic waves and the composite plate
is clamped in the z3-direction (S3 = 0). An and C are
the coefficients which will be determined by the boundary
conditions which are traction free and & = +V/2 (here
exp(—jwt) is omitted) at r3 = +t/2.

The stresses T3, Ts and electric displacement Dj are
expressed as:

m 3

TS = Z Z TS (n,4) cos(h,z1) cos(Bnz3) An

n=1i=1
+(esn +T§ cos(h$21))C
m 3
EDY TG (n,4) sin(h;z1) sin(Bnz3) An

n=1i=1

(20a)

(20b)

m 3
D§ = Z Z DS (i) cos(hS;z1) cos(3n73) An
n=1 i=1

+ (—£3; + DS cos(h§21))C (20c)

TP =" S Thn.i)cos (h:; 2 - 5‘25)) cos(Bnz3) An
n=1 i=1
+ TF cos (h{)’l (:rl - %) (20d)

<
m )C
<

TF = Z Z T (n,i)sin (h,“:x Ty — g)) sin(8,13)An

n=1i=1 (206)
m 2 d
Df = Z }: D¥(n,i)cos (hf,- T - 5)) cos(Bnz3)An
n=] i=1
-e0C (201)

where TG(n. i), TG(n.1), DS (n.1), TH(n. 1), Th(n.1), and
DP(n.i) are the same as Tg(i). TS (i), D§ (i), TsH(i).
TH (). and DP (i) in (11) to (14) if the subscript i there
is replaced by n and i for i-th partial wave of n-th mode
here. And

C _ ~EpC RC P_ PP pP C € pC
Ty =cizhaRg, To = chhfiRy. Do =enhgRg.

The number of the eigenfunctions. m, required in the
expansion is determined by the accuracy needed for the
solution. For the problem treated here. we found that it
is adequate to use eight eigen-modes in the expansion. In
the frequency range studied (fd <2 MHzxmm), there are
two branches having real’ and the other branches having
either imaginary or complex S. which corresponds to the
modes confined at the surface of z3 = %t/2.

For the problem treated here. all the stress components
in air are zero and for the sake of simplicity. D in air is also
assumed to be zero since the dielectric permittivity of the
composite is much higher than air. Under these conditions.
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the variational formula takes the following form:

/{(Tkl.k — pii)6u} + Dxxd®"1dV
-

+ /[(-Tkl)éu,‘ +(®- 3)5D;];15 =0 (21)
5

where the integration over time has been performed to
take into account the complex notations for the quantities
in the integrands [19], [21]. The = represents the complex
conjugate of the corresponding quantity. The first integral
is over the volume of the 2-2 composite plate. and it can
be shown that it is equal to zero since all the quantities in
the integrand satisfy (1). The second integral is over the
surfaces of the composite plate at 23 = +t/2 where d =
+V/2 at 73 = £t/2 where V is the applied voltage. The
periodic condition of the composite in the z,-direction and
the symmetric condition of the solutions and the boundary
conditions about the plane of r3 = 0 allow the second
integration to be performed over one unit cell at z3 = t/2.

Substituting T3, Ts, u1. u3. . and Dj into (21) yields
the following linear algebraic equation:

(M,5)(4,) = (W) (22)

where (\/;;) is a 9 x 9 matrix. (4,) = (Ay, A2, A3, Ay As.
Ag. A7, 4:.0)T, (V) isa9x1 matrix whose elements de-
pend only on V/, the applied voltage. For a given frequency
f, one can solve (22) to obtain 4, and C. From A; and
C. (18). (19). and (20) yield all the characteristic proper-
ties related to the vibration of a 2-2 composite plate with
different thickness and different ceramic volume fraction
such as the electrical impedance. surface displacement dis-
tribution. resonant modes. electromechanical coupling co-
efficient. etc.

For the composite plate treated here. the electrical
impedance for a single repeating unit can be found from:

-
z=7 (23)

where I is the current which is equalto I = i—? = —-jw@Q =

—j2ub f:m D .dz,, where Q and b are the electric charge
and the length in the z,-direction of the plate. respectively.
To compare with the experimental result. the current I
should be multiplied by N. the number of repeating unit
in a composite plate.

Shown in Fig. 6(a) is the electric impedance curve cal-
culated from (22) and (23) for a composite plate with
t/d = 1.5 and the ceramic volume fraction v = 44%.
The electric impedance measured experimentally from the
same composite plate is shown in Fig. 6(b) and clearly the
theoretical impedance curve reproduces the experimental
data quirte well. The difference in the sharpness of the res-
onant peaks between the experimental data and the theo-
retical curve is due to the fact that in the theoretical anal-
vsis. the electrical and mechanical losses of the ceramic
and polyvmer phases were not included.
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Fig. 6. The electric impedance curve for a 2-2 composite plate with
PZT-3H and Spurr epoxy (44% ceramic) measured in air: (a) the
theoretical curve and (b) the experimental curve. The thickness ¢ of
the composite is t/d = 4.5 and d = 0.635 mm. f;; and fr3 are the
fundamental and third harmonic of the thickness mode and t1 and ¢2
are the modes arose from the periodicity of the composite. (c) The
dispersion curves elucidating the origin of the resonant modes f:1
and fi2. In general. any modes on the dispersion curves will show
up whenever 3d = (2n + 1)/2, n = 0,1.2,... is satisfied, where
B=2r/Aand A =2t.
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Fig. 7. The distribution of the elastic displacement u3 for fr1, fr3,
fe1, and fi2 of a 2-2 composite with t/d = 4, where (a) and (b) are
the distributions along the z3-direction when z; = 0 [at the center
line of the ceramic plate, Fig. 1(b)], z3 = 0 is at the center and
z3 = 2 is at the ceramic surface; (c) and (d) are surface vibration
profiles at £3 = 2. z; = 0 corresponds to the center of the ceramic
plate and z; = 0.5 is at the center of the polymer plate.

In Fig. 6(c). the peak positions from the experimental
data are compared with the dispersion curves for this com-
posite which shows excellent agreement between the two.
In order to elucidate the nature of these modes, the spatial
distribution of uz at each mode at the composite surface
is presented in Fig. 7 which are evaluated based on (18)
and (19). Apparently, fr; is the fundamental thickness
resonance and f;; is the first lateral mode as revealed by
the fact that the ceramic and polymer vibrate 180° out of
phase at this mode, as predicted in the earlier theoretical
work [7], [8]. The frequency position and the distribution of
u3 along the z3 axis indicate that f73 is the third harmonic
of the thickness mode. However. the appearance of f;2 is
not expected from the earlier theoretical works in which
the ceramic and polymer vibrate in phase. By examining
the equations of the boundary conditions at z3 = %t/2,
it can be deduced that a resonance will occur whenever
B = (1+2n)=/t, ie., cos(ft/2) = 0. Hence, the disper-
sion curves of real 8, as shown in Fig. 6(c), reveal that
the fundamental thickness resonance and the first lateral
resonance occur at 8 = w/t (fr1 and fi1). Similarly, when
B = 3x/t. the third harmonic of the thickness mode will
occur at fr3. In addition, a mode f;» will also show up at
the branch 1 which is at a frequency near and above f;;. By
the same argument, it would be expected that f1s, fi3, etc.
may also be observed, depending on the electromechani-
cal coupling factors of these modes. As shown later, the
effective coupling factor for the modes in the first branch
will decrease with increasing 8d. i.e.. reducing thickness,
and on the other hand, the effective coupling factor for the
modes in the second branch will increase with 5. As the
ratio of t/d decreases, the frequency of the thickness mode
will gradually move toward the first lateral mode which
will become stronger (coupling factor increases), and the
second lateral mode (fi2) becomes weaker and finally it
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Fig. 8. The evolution of various modes in a 2-2 composite made
of PZT-3H (44% ceramic) and Spurr epoxyv with the thickness ¢ of
composite plate: (a) t/d = 4. (b) t/d = 2, and (c) t/d = 1. There is
already substantial coupling between the thickness and lateral modes
at t/d = 2 for this composite. At low t/d values (thin samples), the
lateral mode will disappear.

will disappear. These features are summarized in Fig. 8
which provide understanding on the earlier experimental
observations on how various modes change with tempera-
ture (which causes reduction of the shear velocity of the
polymer phase) and the composite thickness {5].

Both the experimental results and the theoretical data
indicate that the ceramic and polymer vibrate in phase
for all the modes on the first branch and out of phase for
modes on the second branch.

The electromechanical coupling factor for the thick-
ness resonance can be evaluated based on the definition
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Fig. 9. The evolution of the coupling factor for the modes on the
first and second branches of the dispersion curves with the composite
thickness d/t for a composite made of PZT-5H and Spurr epoxy with
44% ceramic content.

1.2

of IEEE [20]:
K2 = ’72:;—,, tan (%f%f_) (24)

where k, is the thickness mode coupling factor. f, and fo
are the series and parallel resonance frequencies, respec-
tively. Equation (24) is used here to calculate the coupling
factor for the modes in both the first and second branches.
Shown in Fig. 9 are the results for a 2-2 composite plate
with 44% ceramic volume content for different d/t. where
both theoretical and experimental results are presented.
As the ratio of d/t increases. the coupling factor of the
mode (thickness mode) in the first branch gradually de-
creases. while the coupling factor of the mode in the sec-
ond branch gradually increases due to the modes coupling.
As d/t increases further, the thickness mode will jump to
the second branch when the coupling factor in the sec-
ond branch surpasses that of the first branch. Although in
this region the coupling factor for the thickness mode can
still be quite high, the distribution of u3 is not uniform
on the composite surface and the ceramic and polymer vi-
brate 180° out of phase, which is not desirable since the
polymer phase will not be able to perform properly the
function of transferring the acoustic energy between the
ceramic plates and the external medium.

For a composite plate to work effectively as an elec-
tromechanical transduction material, it is required that
the ceramic and the polymer plates in the composite vi-
brate in phase with nearly the same amplitude in the z;-
direction. The evolution of the vibration pattern in the
two phases with frequency and the effect of the aspect
ratio t/d of a composite plate on this distribution are in-
vestigated. Shown in Fig. 10(a) is the variation of the ratio
uf /u§ at the surface of the composite plate, where uf and
u§ are uz at the centers of the polymer (z: = d/2) and
the ceramic plates (r; = 0). respectively, with frequency
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for the composite plate of t/d = 4 where both the ex-
perimental results and theoretically calculated curve are
presented. The experimental data were acquired using a
laser dilatometer [23]. Hence, at frequencies far below any
resonant mode, u} /u§ is always less than one, which is
true as long as the composite is driven electrically. For a
given frequency. as t/d increases, this ratio increases and
approaches one. These are consistent with the results of
the earlier theoretical work on the static properties of com-
posites [24]. As frequency increases, the ratio uf /u§ in-
creases toward one. At a frequency f; which is near f, of
the thickness mode, u} /u§ = 1. This ratio will surpass
one as the frequency is further increased. This is true as
long as fr1 < fa. In Fig. 10(b), the change of fi/fs vs.
the ratio of d/t is presented. Clearly, f1/f, is close to, but
larger than. one except for composite plates with a small
aspect ratio. Hence, the aspect ratio t/d does not have a
significant effect on the ratio of uf /u§ at frequencies very
near f, of the thickness mode, where uf /u§ is always near
one if the thickness mode is below the first lateral mode
frequency. However, it will affect the bandwidth in which
uf /u§ is near one. For example, the bandwidth Af/fi,
where Af is defined here as the frequency width in which
0.9 < uf /u§ < 1.1, increases as the ratio of d/t decreases,
which is shown in Fig. 10(b). The experimental data points
are also presented in Fig. 10(b) and the agreement between
the two is quite good.

V. FORCED VIBRATION OF A PIEZOCOMPOSITE PLATE
IN A FLuip MEDIUM

Following a similar procedure as outlined in the preced-
ing section, the vibration problem of a composite plate in
a fluid medium can also be analyzed. which are more rele-
vant to the practical design and application of a composite
transducer. The fluid medium chosen for the study is wa-
ter and two situations will be investigated: the composite
plate as a transmitter, i.e., under a harmonic electric field,
and the composite as a receiver, i.e., under a harmonic
acoustic pressure in water.

A. Forced Vibration of a Composite Plate in Water
under an AC Electric Field

For the sake of convenience, we will treat the system as
a symmetric one in which the composite plate is loaded by
water on both surfaces, hence, the boundary conditions at
the composite-water interface are:

TEm = TV, TE™ =0, u§™ = o’
t

5 (25)

and4>=:b—‘;-atx3=:{:

where superscripts Cm and W denote the quantities in
the composite and water, and the factor e™7“* is omitted
in electric potential ®. The variational formula for this
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Fig. 10. (a) The ratio of ug /u§ vs. frequency for a composite made
of PZT-5H and Spurr epoxy (44% ceramic content) at a thickness of
t/d = 4 (d = 0.635 mm) measured in air. u§ and u§ are the surface
displacements at the centers of the polymer plate and ceramic plate,
respectively. The black dots are the experimental data measured us-
ing a laser dilatometer and the solid line is derived from the model.
(b) The ratio f1/fs as a function of the ratio d/t of the composite
plate, where f; is the frequency at which uf/u§ = 1 and f, is the
series resonant frequency for the thickness mode. The black dots are .
experimental data and the solid lines are derived from the model
calculation. (c) The bandwidth as a function of the ratio d/t of the
composite plate. The black dots are experimental data and the solid
lines are derived from the model calculation.
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problemn can be derived as:
1 : m - mye
[ 30T =186 + 605
S

+ (u§™ - uf)(S(T3) + 8(TE™)))dS

+ / (8°™ - ®)5(DE™)" = TE™6(u™)*)dS =0 (26)
S

where §= indicates that the integration is over the two
composite-water interfaces (at z3 = £¢/2), and the inte-
gration over the volume has been omitted since it is equal
to zero.

Here. the expressions for the elastic displacement vec-
tors and the electrical potential & in the composite are
those in (18) and (19). Because of the periodic nature of
the composite plate in the zj-direction, the solutions in
water have the form:

J
u}t =3 Z hY sin(h¥ z,) exp(£78% z;)RY

n=0
J
ul = z BY cos(h z,) exp(£78Y z3)RW
n=0 (27)
) J
T,V =518 Z cos(h? z,) exp(7BY z3)RYY
n=0
where A!Y = '22—", Bn = (ﬁ:’jr—(h):’)"’v Ty =
VB B = e, VY = ,/% is the longitudinal

wave velocity of water, ¢V is the bulk modulus of water.
= correspond to the solutions in z3 > 0 region and z; < 0
region, respectively. h and 8 are the wave vector compo-
nents in the - and z3-directions in water. RY is deter-
mined by the boundary conditions through the variational
principle formula (26).

Substituting (18), (19), and (27) into (26) yields a set

of linear algebraic equations:

(Mi;)(4;5) = (Vi) (28)
where (\/;;) is a matrix in which its elements are related
to the parameters of water, ceramic. and polymer and the
geometrical parameters v and d. as well as w, 3, and h.
(4;) = (A1....,Am,C,RY,....RY), where m and J are
the numbers of the eigenfunctions used in the expansions
for the quantities in the composite and in water, respec-
tively, and how many eigenfunctions should be used in the
expansion depends on the accuracy desired. In this calcu-
lation. m = 8 and J = 6. Hence. (V;) is a 16 x 1 matrix
which elements depend on the applied voltage V. Equation
(28) is solved numerically.

Shown in Fig. 11(a) is a theoretical electrical impedance
curve for a 2-2 composite plate of 44% ceramic volume
content and the aspect ratio t/d = 3.8 loaded with wa-
ter. For the comparison, the experimental curve for the
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Fig. 11. The electrical impedance magnitude for a 2-2 composite
of PZT-3H and Spurr epoxy with 445 ceramic content measured in
water. The thickness of the composite is t/d = 3.8 and d = 0.635 mm.
(a) is derived from the model and (b) is the experimental results. The
modes 1 and 2 are the lateral modes [f;; and fi3 in Fig. 6(c)] and
mode 3 arises from the coupling of water to the periodic structure of
the composite surface.

same composite plate is shown in Fig. 11(b). The agree-
ment between the experimental result and the theoretical
one is quite good. The relatively sharp resonant peaks in
the theoretical curve compared with the experimental one
are due to the fact that in the theoretical calculation. the
elastic and dielectric losses of the composite plate are not
included. Comparison between Fig. 11 with Fig. 6, which
is the electrical impedance for a similar composite plate in
air. reveals that the resonance is severely damped in water
as shown by the marked broadening of the resonant peaks
in the impedance curve. For the lateral modes (modes 1
and 2 in Fig. 11) which is mainly determined by the shear
resonance of the polymer phase in the 2-2 composite in-
vestigated. because the acoustic impedance between the
polymer and water is very close. the change in the am-
plitude is quite significant. One interesting feature of the
influence of the water loading on a composite plate is the
appearance of a mode which is labeled 3 in Fig. 11. It can
be shown that the resonant frequency for this mode does
not change very much as the thickness of the composite
plate changes. From the stress distribution pattern in the
water. it is not difficult to show that this mode is related to
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the coupling between the composite and water, and its fre-
quency is determined by the periodicity d and the acoustic
wave velocity of water (f = V¥/d). And it corresponds to
the local oscillation of water within one unit cell.

In analogous to the situation in air, it is also found that
in water, at frequencies far below any resonant mode, the
ratio of u /u§ is always less than one and will approach
one as the aspect ratio t/d increases. As the frequency in-
creases toward the thickness resonant frequency, uf /u§
increases toward one. At a frequency fi near the thickness
resonant frequency fs, this ratio becomes one and above
that, this ratio is larger than one [Fig. 12(a)]. Fig. 12(b)
presents f1/f, and Af/fi vs. the ratio of d/t for a com-

posite with 44% ceramic content. Clearly, the effect of the

aspect ratio t/d on the surface uniformity of a composite
plate is to change the frequency position fi with respect
to the thickness resonance and the frequency width Af in
which uf /u§ is near one which are very similar to that
found in air. However, the bandwidth Af/f, in water is
larger than that in air, indicating that the surface distribu-
tion of the displacement of the two phases is much flatter
in water than in air which is quite understandable. Because
of the water loading, the vibration amplitude of the poly-
mer phase is significantly reduced. Fig. 12(a) shows how
the ratio of uf /u§ at the composite surface varies with
frequency (t/d = 4). One noticeable change between the
surface profiles in air and in water is that in water, even
at the lateral mode frequency, this ratio does not become
very large (not shown in Fig. 12 since the lateral mode
frequency is at about 1.5 MHz).

B. Forced Vibration of a Composite Plate in Water
under Harmonic Acoustic Pressure

Now we turn to investigate the vibration behavior of
a composite plate in water under harmonic acoustic pres-
sure, that is. to study issues related to the receiving sensi-
tivity of a simple 2-2 composite transducer. For simplicity,
we shall restrict the treatment to the symmetric system.
In this case. as sketched in Fig. 13, the incident acoustic
waves impinge normally on the two surfaces of the com-
posite plate from opposite directions and the boundary
conditions for this problem are:

Tscm = 3‘V= TSCm = 0, ugm = u:‘;"
t

and D§™ =0 at z3=%5. (29)

The appropriate variational formula is:
1 ° - my»
[ F1E - T8y + 6
St
+ (™ = u ) O(TY) + 6(TF™)")dS

- / iDS™S(@C™)* + TE™S(uf™)"|dS = 0. (30)
Ss=

The expressions of the displacements and electrical poten-
tial in the composite plate are those in (18) and (19) except
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Fig. 12. (a) The ratio of ug/ug vs. frequency for a composite made
of PZT-5H and Spurr epoxy (44% ceramic content) at a thickness
of t/d = 4 (d = 0.635 mm) measured in water. u§ and u§ are the
surface displacements at the centers of the polymer plate and ceramic
plate. respectively. The results are derived from the model. (b) The
ratio fi/fs as a function of d/t of the composite plate, where fi
is the frequency at which u§/u§ = 1 and f, is the series resonant
frequency for the thickness mode. The results are derived from the
model. (c) The bandwidth as a function of d/t of the composite
plate. The resuits here can be compared with those in Fig. 10 and
apparently. and the water loading improves the uniformity of the
vibration profile at the composite surface. The results are derived
from the model.
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Fig. 13. Schematic drawing of a 2-2 composite plate under normal
incident of a pressure wave from the water.

now the mode of 8 = 0 should not be included since there
is no externally applied electric field. To account for the
incident wave in water, (27) is modified and the solutions
in the z3 > 0 region are:

J
ulV = }: hY sin(h) z,) exp(58% z3) RY

n=0

uy = - exp(—jBozs)

J
+ B cos(hy'zy) exp(iBY z3) RYY
n=0

(31)

T3" = 515" |exp(~jBozs)

J
+ ) cos(h¥z)) exp(iBY z3)RY

n=0

where the term of —G;exp(—jByz3) corresponds to the
incident plane wave. By substituting (18), (19), and (31)
into (30), we obtain a set of linear algebraic equations:

(Mi;)(4;) = (V3) (32)

where (\M;;) is a 15 x 15 matrix, (4;) = (Ay,... ,Am,ROW,
...;R") withm = 8 and J = 6, and (Vi) is a 15 x 1
matrix related to the incident wave. By solving (32) one
can obtain all of the properties related to the behaviors of
a composite plate under a harmonic acoustic pressure.
Shown in Fig. 14 is the open circuit voltage receiving
sensitivity V/p, where V is the voltage output and p is
the pressure of the incident wave, for a 44% 2-2 compos-
ite plate at the thickness resonance vs. d/t for the thick-
ness resonance mode where the cross over region (point B
in Fig. 2) is at d/t = 0.65 [25]. That is, at d/t < 0.65.
the thickness mode is in the first branch of the dispersion
curves and above that, the thickness resonance is at the
second branch of the dispersion curves where the poly-
mer and ceramic vibrate out of phase. Since the prob-
lems treated in this paper are related only to the piezo-
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Fig. 14. (a) The influence of the unit cell dimension ratio of d/t
on the open circuit voltage sensitivity of a 2-2 composite with 44%
PZT-5H and Spurr epoxy matrix. Solid dots are V/p at the peak
frequency (fp) and the solid line is the sensitivity of a single phase
material with the effective properties of the composite. The results
are derived from the model. (b) The 3 dB bandwidth as a function
of d/t for a composite transducer derived from the model. (c) FOM
(solid dots. the product of the sensitivity and the bandwidth) for the
2-2 composite in (a) as a function of d/t. The solid line is FOM for a
single phase material with the effective properties of the composite.
At d/t > 0.5. FOM drops much below the single phase material
value. The results are derived from the model.
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materials. the open-circuit receiving sensitivity is used here
which. as pointed out by Kojima [25], is a system in-
dependent parameter. The bandwidth is defined as the
3 dB width about the peak frequency (f, for the receiv-
ing mode). For a single phase material, it can be derived
from the KLM model that the sensitivity here should be
proportional to ¢, the thickness of the transducer. Hence.
in Fig. 14. the V/p vs. d/t curve for a single phase ma-
terial should fall off as ¢ (solid line in Fig. 14) while the
bandwidth should stay constant. The results show that
the sensitivity of the thickness mode for a 2-2 composite
decreases slowly as d/t becomes larger than 0.4, but the
bandwidth increases gradually. The increase in the band-
width is due to the merger of the two resonant modes in
water. After that, there are anomalous changes in both the
bandwidth and the sensitivity in the cross-over region. At
higher values of d/t (thin composite plates), both the sen-
sitivity and the bandwidth fall much below the values of
single phase material (solid line). If we define the figure of
merit (FOM) here as the product of sensitivity and band-
width, as shown in Fig. 14(b), at d/t < 0.5, the FOM falls
off with ¢. At d/t > 0.5, the FOM drops to much smaller
value. Therefore, in order to gain a high receiving sensitiv-
ity and a broad bandwidth of a 2-2 composite transducer,
it is desirable to have d/t less than 0.5. The results here
can be compared with what is shown in Figs. 2, 8, 9, and
12. At d/t above 0.5, the coupling factor shows a precipi-
tous drop (Fig. 9) and the thickness mode frequency also
shows an apparent deviation from the extrapolated value
(the dashed line in Fig. 2). Fig. 8 also shows that there
is a significant coupling between the two modes. Although
the results presented are for a composite with 44% ceramic
content. it is approximately true for composites with other
volume fractions.

VI. SUMMARY

The details of a theoretical model on piezoceramic poly-
mer composites with laminar periodic structure are pre-
sented. The result shows that the various resonant modes
in a composite structure can be traced back to the modes
in either an isolated ceramic plate or polymer plate with
appropriate boundary conditions (stress free for the ce-
ramic plate and strain free for the polymer plate). It also
shows that there exist a series of modes associated with
the periodic structure of a composite, which is beyond the
stop-band edge resonance prediction. One of the main con-
cerns in designing a composite transducer is how the sur-
face vibration profile changes with frequency and how this
is influenced by the aspect ratio t/d. It was predicted and
verified by experiment that as long as the thickness res-
onance is below thé first lateral mode frequency, there is
always a frequency fi which is near the thickness reso-
nance and at which the polymer and ceramic vibrate in
unison. The effect of ¢/d is to change the position of f;
with respect to the thickness resonance frequency and the
bandwidth in which polymer and ceramic have nearly the
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Fig. 15. The experimental data on the insertion loss (open circles)
and 6 dB bandwidth (solid dots) of 2-2 composites with 44% volume
content of PZT-5H and Spurr epoxy polymer matrix measured by
the pulse echo method for different ratio of d/t (d = 0.635 mm). The
solid lines are drawn to guide eyes.

same vibration amplitude and phase. It is also predicted
that, when operated in a fluid medium such as water, there
will be a resonance mode whose frequency is determined
by the velocity of the fluid medium and the unit cell length
d and is associated with the oscillation of the fluid, caus-
ing the polymer and ceramic to vibrate 180° out of phase.
The difference in the surface vibration profiles between in
air and in water indicates the need to characterize the vi-
bration pattern of a composite in a fluid medium since it
is much closer to the real application environment.

In general, the maximum transmitting voltage sensitiv-
ity of a transducer is at a frequency near f, and the max-
imum open circuit receiving sensitivity is near f, of the
thickness mode (f, > f,), and hence it is expected that
the influence of the lateral mode (hence, the aspect ra-
tio t/d) will be more severe on the receiving sensitivity.
From the data analysis, it is shown that, when an FOM
which is the product of the sensitivity and the bandwidth
is introduced as the criterion of the performance of a com-
posite transducer as a receiver, the performance deterio-
rates when d/t > 0.5 for the composite discussed here.
Experimental results confirm this finding where, as shown
in Fig. 13, the insertion loss of a 2-2 piezocomposite shows
large increases at d/t near and above 0.5.
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Acoustic Properties of the Interface of a Uniform Medium-2-2 Piezocomposite

and the Field Distributions in the Composite
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The acoustic properties of a medium-composite interface and the field distributions in a 2-2 composite are
analyzed based on an approach developed recently. It is found that the effective input acoustic impedance Z;, of
the composite shows marked dependence on the shear stiffness constant of the medium in contact, which is related
to the non-uniform vibration distribution at the composite surface. Sirce for a piezoceramic polymer composite,
it is the ceramic phase which performs the energy conversion between the acoustic and electric forms, the amount
of acoustic energy which can enter the ceramic region is one of the most important parameters in a composite
transducer design. We show that even though the effective transmission coefficient increases as the frequency is
increased. the amount of acoustic energy entering the ceramic region actually decreases. From the fact that there
is more than 180° phase change in the reflection wave from the medium-composite interface, it is shown that the
martching layver thickness is no longer equal to the quarter wavelength. but smaller, and the theoretical predictions

are confirmed experimentally.

KEYWORDS: piezocomposite, acoustic properties, ultrasonic transducer, modeling

1. Introduction

Transmission and reflection of a wave at an interface
is of great importance in many areas of modern technol-
ogr such as the optical. electromagnetic. acoustic. and
marterials nondestructive evaluations. For homogeneous
marerials. a quantitative understanding of how the mate-
rial properties at the interface influence the transmission
and reflection of various wave components has been well
established.'? However. for materials with heterogene-
itv such as composites, much work remains to be done
in order to provide both qualitative and quantitative un-
derstandings on how a composite structure affect flows
of =vaves at an interface between a composite and a ho-
mogeneous fluid or solid medium.

For the piezoceramic polymer composites used for ul-
trasonic transducer applications.*® in addition to the
wave transmission and reflection at the interface. one
has also to deal with the acoustic energy transfer be-
tween the two constituents. i.e.. the piezoceramic and
poivmer phases. In a piezoceramic polymer composite.
because the energy conversion between the electric and
mechanical forms can only be carried out in the ceramic
phase the polymer phase acts as a carrier to transfer
the acoustic energy between the piezoceramic and the
external medium to which the transducer is interacting.

learly, to establish a structure performance relation-
ship in this type of material. both the propagation of
the acoustic energy at the composite-medium interface
and the effectiveness of the energy transfer between the
poivmer and ceramic inside a composite have to be con-
sicered. '

The objective of this paper is to examine quantita-
tiveir how the material properties at the two sides of
the interface, i.e., the properties of a piezoceramic poly-
rer composite and a uniform medium. either a liquid
or a solid. influence the wave transmission and reflection
at the interface and the acoustic energy transfer inside
the composite. and how these affect the parameters of

the marching layer at the interface. The approach taken
here is based on the eigen-mode expansion method and
variational technique. ™

The organization of the paper is as follows: In §2. the
general formula used to treat the wave propagation at
the interface is briefly presented and the results for the
fuid-composite interface are analyzed. The definition of
the inpurt acoustic impedance Z., of the composite at the
interface is also discussed. The acoustic energy transfer
between the ceramic and polvmer is analyzed. In §3,
the wave propagation at a interface between a solid and
a piezocomposite is treated where the influence of the
snear elastic constant of the solid on Z;, of the composite
is anaixzed. In §4. the issues related to the anti-reflection
quarter wave matching layer at a composite-medium in-
terface are examined. And in §3. a brief summary and
discussion are presented.

In the paper, the piezoceramic polymer composites
used in the model calculations and in experiments are
those made of PZT-5H piezoceramic and Spurr epoxy
polvmer matrix.” The composites have a 2-2 connectiv-
itv (a rerminology introduced by Newnham),® i.e., the
ceramic and polymer form a periodic laminated structure
as shown schematically in Fig. 1(a).

2. Plane Acoustic Wave Propagation at a Fluid-2-2
Composite Interface

The schematic of the interface system is shown in
Fig. 1(b) where a plane acoustic wave is normally in- -
cident upon the boundary between a fluid and a 2-2
piezocomposite. The coordinate svstem is chosen such
that the r;-axis is perpendicular to the interface, the z,-
axis is parallel to the interface as shown in the figure,
and the z,-axis is perpendicular to both the z, and z,
axes (pointing out of the paper). The fluid occupies the
space of z; < 0 and the 2-2 composite is in z; > 0. Since
the dimension in the z,-direction is much larger than the
period d of the 2-2 composite and the wave fields are uni-
form in that direction, it can be taken as infinite without
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Fig. 1. {a} Schematic of a 2-2 piezoceramic polymer composite
~here the dimensions in both the z; and z; directions are much
iarger than the period d. {b) Schematic of an interface between
a 3uid and a 2-2 piezocomposite where a plane acoustic wave
aormally incidents to the interface from the flvid medium. The
composite occupies the semi-infinite space z3 > 0.

much error in the results. Hence. for the dynamic prob-
jem to be considered. the 2-2 composite can be regarded
as elastically clamped in the r.-direction so that S; = 0.
where S, is the strain in that direction. and we have a
two dimensional problem with no dependence on the -
variable. In the discussion here. the parameters chosen
for the fluid medium are those of water.
The governing equations for this problem are

I),l = pu;
D . =0 (1

Where i and j = 1 and 3. The symbols adopted in this
paper are summarized here: T, and S;; are the stress and
strain tensor components. where the matrix notation is
used. u, is the elastic displacement vector. p is the mass
density, D, is the electric displacement vector, and E,
is the electric field. The relevant material coefficients
are: e, is the piezoelectric coefficient. c,, is the elastic
stiffness. and ¢, is the dielectric permittivity.
The constitutive equations in the composite are:

(T} = [c¥][S] - [e][E]
(D] = [e°]({S] + [¢*][E]

For the polvmer phasc. e,. in eq. (2) are zero. In the

(2
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fluid medium. the constitutive relation has the form

duy

- Ou,
T =T5 = A (81_l + 5;:) (3)

where A" is the bulk modulus of the fluid.'® The bound-
ary conditions at the fluid-2-2 cornposite interface for the
problem are

Tn o TW Cm — Cm ., W
Ism =Ty, T3 =0 wm=uy
¢C-n P ¢W Dcm _ D'.'.‘

) 3 T

The superscripts Cm and 11" represent the 2-2 composite
and the fluid. And & is the electric potential.

In a 2-2 composite plate. as has been shown in earlier
pubiications.® " the displacements and electrical poten-
tial can be expanded in terms of the eigenfunctions in the
unbounded 2-2 composite. The field distribution in the
flui¢ medium are periodic function in the r,-direction
due to the composite structure. The variational tech-
nique is used to treat the boundary conditions [eq. (4)]
and hence to determine the expansion coefficients.*’

Cre important paramerer celated closely to the reflec-
tion and transmission of an acoustic wave at an interface
is the acoustic impedance of the media at the two sides
of ==e boundary which also depends on the nature of the
~ave such as plane wave or spherical wave.'*' For ho-
—ogeneous isotropic materials. the acoustic impedance
for 2 plane wave is the characteristic acoustic impedance
~hich is simply the product of the mass density p and the
vave +longitudinal wave or shear wave) velocity 17,2313
For zonuniform materiais such as piezocomposite ma-
teczisi. on the other hand. a0 characteristic impedance
car Se defined in such a sizple manner due to the dis-
persive nature of the properries. However, the acoustic
mredance of a material can still be found. for exam-
ole. Zrom the reflection coeZcient or other methods. It
snouid be pointed out that although there exist several
ceZritions for determining :he acoustic impedance at an
interface (input acoustic impedance), for a heterogeneous
material. the results obraired by using different defini-
ticns may not be the same.*> ¥) However. since the input
acoustic impedance is not a direct physical quantity but
rather a parameter introduced for the convenience of the
anaivsis. a situation in anaiogy to the complex notation
introduced in many enginesring fields. which definition is
more appropriate really depends on the situation where
it i¢ used. In dealing with the energy transfer across
an :aterface. one might have to use the formula derived
uncer energy flow consideration. On the other hand. in
designing matching lavers and dealing with the reflec-
tion and transmission of acoustic waves in a multilayer
xedium. the amplitude and phase of the wave compo-
nests are crucial which may not be included in the coef-
Scients related to the transmission and reflection of the
acoustic energy. In the discussion here, we will adopt
the definition related to the wave reflection and trans-
mission problems and two different approaches will be
used to evaluate Z,, of a composite.'¥

-om the reflection coeficient R, the input acoustic
impedance of the composite at the interface can be found
as

at ;=0 (4)
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Fig. 2. (a) The effective input acoustic impedance Z;, of the 2-2
composite with 44% ceramic content calculated from the re-
dection coefficient R. For the comparison, Z;, calculated from
eq. /5) where only the amplitude of R is used. The results demon-
strate the importance of the phase in the R. (b) Z;, for the 2-2
composite with 15% ceramic volume content.

_1-R._ -
Zin = 1+ RZ ()
where Z;, is the effective input impedance of the 2-2
composite. Z"V is the characteristic impedance of wa-
ter. Using the results of R. the effective input acoustic
impedance of 2-2 composites with 44% and 15% ceramic
volume content is evaluated and presented in Figs. 2(a)
and 2(b). Apparently, there is a large change of the mag-
nitude and phase of the input acoustic impedance as the
frequency increases. For the comparison, the acoustic
impedance is also evaluated from eq. (5) where only the
magnitude of the reflection coefficient is used and shown
in Fig. 2(a). Clearly, the results show how erroneous it
can be if the phase information in the reflection coeffi-
cient is ignored.'® -
In analogy to the electrical impedance, the specific

_impedance at the interface can also be found from the

ratio of the stress (in analogy to the voltage) to the dis-
placement velocity (in analogy to the current):

Tf"‘(xl, 0)
(e, 0) R

where v$™ is the particle displacement velocity in the 2-2
composite. Equation {6) is used widely in the equivalent
circuit model of transducers.!®!¢-!") Apparently, for a 2-
2 composite considered, Z from eq. (6) is a function of
z, due to the variation of T3 and v; in that direction. To
eliminate this variation. the approach taken by Miller

Z(z,0) =
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Fig. 3. The effective input impedance Zi, calculated from eq. (7)
for (a) the composite of 44% ceramic volume content and (b) the
composite of 15% ceramic content. The results here are nearly
the same as those in Fig. 3 except at frequencies above the first
lateral mode.

and Pursey is adopted here.’® That is, the averaged T}
and averaged v; in the z,-direction are used:

/Tf"‘(;rl, 0)dz,
/'Uzcm(.rl, D)dzl

where the integration is taken in one unit cell. This ex-
pression seems physically meaningful since it reflects an
averaged mechanical impedance of the composite at the
interface. Z, calculated from eq. (7) for composites with
+4% and 15% ceramic contents is shown in Fig. 3 which is
quite close to those in Fig. 2. In the following discussion,
eq. {7) is used to calculate Z;, in the composite.

In order to shed light on the large change of the input
acoustic impedance with frequency, the surface displace-
ment u; is evaluated at the center of the ceramic plate
(z; = 0) and polymer plate (z, = d/2) and the results
are presented in Fig. 4(a). At low frequencies, the sur-
face displacements in the polymer and ceramic regions
are in unison which indicate that the isostrain model
used in many earlier modelings on ultrasonic composite
transducers is valid in this frequency region.!®!9 As the
frequency increases, even at frequencies still far below the
first lateral mode (at fd near 1), the surface vibration
amplitudes in the two regions become quite different. At
the frequency near the first lateral mode, the vibrations
in the polymer and ceramic regions are 180° out of phase
and in this frequency region. the effective input acous-
tic impedance of the composite becomes very small as
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Fig. 4. (a) The surface vibration distribution as a function of
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:he displacement at the center of the polymer plate \xy = d’'2)
and ceramic plate (z; = 0). {b) The acoustic energ {in reduced
units) entering the ceramic and polymer regions as a fucction of
frequency evalnated at tke interface (z3 = 0) where P, is the
zotal energy in the inc:dert wave.

shown in Fig. 2.

As has been pointed out in the introduction. for an
-sitrasonic piezoceramic polymer composite. one of the
most important factors in determining the performance
is the effective acoustic energy exchange between the ce-
ramic and the external medium. As seen in Fig. 3 where
at frequencies near the lateral mode. the input acoustic
‘mpedance of the composite is close to that of water and
hence. the reflection coefficient reaches a minimum. the
question is how much of that energy enters into the ce-
ramic plates. Figure 4(b) shows how the total acoustic
powers entering into the ceramic region and polymer re-
gion vary with frequency. Clearly. at the high frequency
zegion. in spite of the fact that the effective transmis-
sion coefficient of the composite increases. the amount
entering into the ceramic plate actually decreases.

It is also interesting to examine how this acoustic en-
ergy distribution in the polymer and ceramic regions
changes along the r;-direction since the interaction be-
rween the ceramic and polvmer through the joint region
~ill cause the acoustic energy transfer between the two.
In Fig. 5, the acoustic energy distribution along the z;-
direction at three frequencies (f < fi., f = fi/2. and
f = f,, where f, is the first lateral mode frequency) is
shown. In all the cases. there is a redistribution of the
acoustic energy along the r;-axis and the acoustic energy
in the polymer is gradually transferred to the ceramic
nlate. However. at low frequencies. the transition re-
Zion is much shorter than that at high frequencies (with
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Fig. 5. The energ- redisiribution inside the composite along the
r3-direction where z3 = 0 is the interface. Therc is an energy
transfer from the polymer o the ceramic inside the composite
As shown in the figures. the width of the transition region in-
creases as the frequenc™ increases (in reduced length unit).

respect to the wave length at that frequency). For in-
stance, in Fig. 3(a). the reduced length z;/A is about
0.01 for the acoustic power in the ceramic to reach 90%
of the final value. while in Fig. 5(b), this region increases
to about 0.1. and in Fig. 3(c), it becomes near 0.2. It
should be reminded that in a thickness mode transducer.
the thickness of the piezocomposite is A/2.

In Fig. 6, the change of the displacement u; in the
polymer and ceramic regions along the r;-direction at
the three frequencies is presented and it shows that at
high frequencies. the displacement amplitude in the polv-
mer and ceramic regions is no longer the same even deep
inside the composite.

The change of the input acoustic impedance from
eq. (7) along the z;-direction in the composite is also
evaluated. Figure 7 are the results of the 2-2 composite
with 44% ceramic content at different frequencies. Ap-
parently, at high frequencies there is a large change of
the effective acoustic impedance from the surface into
the interior of the composites and even in the interior of
the composite. the effective impedance is not the same
as that derived from the effective medium theory.!®:!?!
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Fig. 6. The vibration profile as a function of the distance from

the interface with water {(z3 = 0) where ug and uf are the dis-
piacement at the center of the polymer plate (z; = d/2) and
ceramic piate (z; = 0). At low frequencies, the polymer and ce-
ramic vibrate with the same amplitude and phase while at high
frequencies, even far away from the interface, the vibration am-
piitude of the two is still not the same while the phase becomes
tke same.

3. Wave Reflection and Transmission at Solid-2-2 Com-
posite Interfaces

The issues investigated in this section are quite similar
to those studied in the preceding section. The difference
is that a solid medium can support shear waves while a
fluid cannot. Due to this difference, the boundary con-
ditions (4) must be modified to:

— TS —Ts cm _ 8§ Cm _ .S
T =Ty TE"=Th uwm=u; ui" =u
o™ =05, D™ =Dj. (8)

where the superscript S refers to the variables in the solid
medium.

As we have shown in a previous paper.® the input
acoustic impedance of 2-2 composites calculated here is
different from that in the fluid case. In addition. it is
also found that at a solid medium-2-2 composite inter-
face. the input acoustic impedance seems to depend on
the characteristic impedance of the solid medium at the
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Fig. 7. The effective input impedance from eq. (7) as a function
of the distance from the interface with water (z3 = 0) at three
typical frequencies: far below the lateral mode, at about the
haif of the lateral mode frequency, and near the lateral mode
frequency.

interface. which is quite different from the fluid medium-
composite interface.

To understand this phenomenon, we notice that the
difference between a solid medium and a fluid one is that
a solid medium has a non-zero shear stiffness constant.
Therefore. Z;, for a 2-2 composite (44% ceramic content)
in contact with solid medium is evaluated where p (mass
density) and c,, are kept as constant and c, is varied
and the results are presented in Fig. 8(a). Similarly, Zi,
for a 2-2 composite in contact with solid medium is also
evaluated where p and c,, are kept constant and ¢,; is
varied and the results are shown in Fig. 8(b). The re-
sults demonstrate that for a plane incident wave, even.
if the characteristic longitudinal impedance of the solid
medium is kept constant. the effective input impedance
of a composite and, hence, the reflection coefficient of
a pure longitudinal wave incident normally at the inter-
face will change if the shear stiffness coefficient of the
solid medium changes. On the other hand, if the shear
stiffness constant is kept constant and the characteristic
longitudinal impedance is varied in the solid medium, the
effective input acoustic impedance of a composite will not
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ig. 3. Data illustrate the dezendence of Z,, of a composite on
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face. (a) The solid medium “or the curve 1 is p = 1.51 z.cm’.

22 = 1.26 x 10'° N/m>. ard ciy = 3.43 x 10° N/m">. and for
curve 2 and curve 3. both s and ¢;; are kept constant and
= 5.36 x 10°N/m* and :; = 1.72 x 10° N/m?. (5, Here
th 2 and cys are kept ccrstant. and ¢;; = 0.63 < 1010,
:2 = 1.56 x 10!° and ¢;; = 2.72 x 101 N/m?. The amoiitude
f Z:5 does not change muck ~ith ¢;; except a smail charge in
cte phase.

!

. 0

0O 0y

have much change. This phenomenon is directly reiated
to the surface uniformiry of <he composite which depends
on :he stress transfer between the two constituents in the
composite through the soiid medium in contact. It can
be shown that this stress -ransfer is through the shear
action in the solid mediur.

To iilustrate this. the surface vibration distribution in
the ceramic and polvmer regions is also evaluated for the
2-2 composite in contact with solid media of different ¢,
and c;; and the results are presented in Fig. 9. There
is very little difference in the surface vibration profile
for solid media with the same c,, and different ¢,;. In
contrast. the surface vibration profile will change as ¢,
is changed [Figs. 9(a) and 2(b)].

Tigure 10 illustrates the input acoustic impedance of
a composite as a function of r, for different solid media
at the interface. It shows the length of the transition
rezion in the composite where the evanescent waves are
important decreases as the acoustic impedance of the
medium. especially the shear modulus, increases.

4. Reflection and Transmission from the Boundary
between Fluid and Acoustic Impedance Matching
Layer

We now proceed to investigate how the various efects

observed in the preceding sections affect the selection of
anti-reflection matching lavers at the interface. Figure
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Fiz. 3. The figures iilustrare the effect of c;; and c;s of the

soiid medium on the surface vibration profile of the compos-

ite. (a) The parameters of :he solid medium for the data of

cdasted curve is p = 1.613’ch. c11 = 1.36 x 10!1°N/m*®. and

€ix = 3.43 x 10°N/m>. ard for <he solid curve, both p. cyy are
<Le same except ¢;; = 2.72x 1010 N/m?. (b) The parameters for
the folid mediumis o = 1.51g-em®. ¢;; = 1.36 x 1010 N/m?, and
< = 6.86 x 109 N/m*. Notice :he effect of c44 On the surface
wibration profile of the composite.

11 is a schematic of an acoustic system which consists
of a duid medium. a marching layer and a 2-2 compos-
ite. In this case. there are two interfaces with different
bouzdary conditions to be treated. One of the interfaces
is Derveen the 2-2 composite and matching laver where
the boundary conditions are those of eq. (8). Another
one is the fluid and matching laver interface where the
bourdary conditions are:

s _ pw s _ 5_,w
Tn=T;. T5=0 u=u,

5 = oV,
D; =D) at z,=-t (9)

where ¢t is the thickness of the matching laver and the
other notations are the same as before.

In general. for homogeneous materials. the reflection
coefficient from the boundary between a fluid and a
matching layver will be zero when the thickness of the
matciing laver is quarter wavelength and its acoustic
impedance ZV is

ZM =VZVZs (10)

where Z% and Z°% are the acoustic impedance of the
media on the two sides of the matching layer. respec-
tively.*-?

For a composite material. from the results obtained in
the preceding sections, it is expected that the parame-
ters of the anti-reflection matching layer will be modi-
fied. Figure 12 illustrates the derived reflection coeffi-
cient from the boundarv between the fiuid and match-
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Fig. 10. Txe fgures illustrate the efect of the elastic proper-
ties of the soiid medium at the interface on the effective in-
put impecaxcce distribution along the r3-axis at a frequency
f-d = 5.2:6)\Hz-mm where x3 = 0 is the interface. (a)
The dasted iime: p = 1.16g/em’. ¢y = 7.72 x 109 N/m?,
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Fig. 11. Schematic of an interface system consisting of a fluid
medium “medium 1), a matching layer., and a 2-2 composite.
The -hickness of the matching layer is t and the period of the
composite is d.

ing layer for different matching laver materials where
the thickness of the matching laver is chose so that
the frequency of the reflection coefficient minimum is at
fd = 0.335MHz-mm. From resuits. it is found that the
acoustic impedance of the matching layer from which
the redection coefficient becomes zero satisfies approxi-
mateiy eq. (10) if Z° is replaced by the effective input
acoustic impedance of the 2-2 composite at the low fre-
quency. However, the thickness of the matching layer is

P
rA rrea-

mrra=sar seavelaneth and in fact. it is chorter
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where the total transmission occurs at f -d = 0.334 MHz-mm
for the matching layer with ¢t = 2.02 x d = 0.91 x (1/4) (at
f-d = 0.334 MHz-mm) and ZM = 4.68 MRayls (p = 1.61g/cm>,
c11 = 1.36 x 1019N/m?, and cqq = 3.43 x 10° N/m?) (curve
1). For the comparison, the reflection coefficient from the
matching lavers with other parameters is also shown here: for
curve 2. Z3 = 3.0Mrayls and t = 1.35 x d, and for curve 3,
ZM =2 11\ Raylsand t = 1.38 x d.
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Fig. 13. The required parameters for {a) Z¥ and (b) t of the
matching layer to have total transmission as a function of fre-
quency for a water-2-2 composite (445 ceramic volume content)
interface (solid lines are the theoretical predictions). The exper-
imentai data was presented in (b) as open circles.

than A/4. These results are summarized in Fig. 13. The
data in Fig. 13(a) is the acoustic impedance of the match-
ing laver in order for the reflection coefficient to be zero
as a function of frequency. In Fig. 13(b), the change of
the marching layer thickness as a function of frequency
is presented where t = 1 corresponds to the thickness
of A/4 art that frequency. Therefore. as the frequency in-
creases. karh the acoustic impedance and the thickness of
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the matching layer decrease. For example. when the fre-
cuency changes from 0.03 MHz-mm to 0.5 MHz mm. the
acoustic impedance of the matching laver changes from
4.70 MRavls to 4.45 MRayls and the thickness t changes
from about A/4 to 0.86 x A/4. The reduction in the
zarching layer thickness is a direct result of the fact that
the incident plane wave suffers more than 180° phase loss
upon the reflection from the interface.

From the fact that in the frequency range of interest-

ing. the evanescent waves at the interface will decay ap-
proximately as exp(—2n=z;/d). the effect of the interface
of =; = —t, where t is approximately A/4, to the surface
vibration distribution at the composite-matching layer
interface will be quite small. Therefore. the reflection
coefficient between a solid medium and a composite can
be used to approximate the reflection at the matching
laver-composite interface. Hence. the reflection coefh-
cient R from the system in Fig. 11 can be approximared
as:
Ry, + ste:'a‘;‘
1-— R:]Rzgezﬂ’gt
~here R,, is the reflection coefficient from the interface
of two semi-infinite media of the fluid and solid tto ap-
sroximate the reflection coefficients at the fluid-marching
.aver interface). and R.; is that from the solid medium-
composite interface (1o approximate the reflection co-
2=cient at the matching laver-2-2 composite interface’.
T-om egq. (11), the requirements to the matching laver to
achieve the total transmission (R = 0) can be derived.
T=e acoustic impedance of the matching layver is

ZM = \/;\\'}Zcm,izc'“{ A cOS(G) i :2)

R= (11)

1Z€m|cos(8) = ZW

=here 6 is the phase angle of the acoustic impedance of
zhe 2-2 composite. The rhickness of the matching laver

1 22 Z¢™ | sin() ,
t’I{l_,:.mm(;szp—{z-V)z>} (13)

In the frequency range of interest. the resuits from
ecs. (12) and (13) are almost identical to those derived
*om the numerical caicuiation presented in Fig. 13.

In order to verifv the theoretical predictions. the re-
3ection coefficient from a fluid-matching layer interface
was measured as a function of frequency utilizing the
experimental set-up shown in Fig. 14 where a stainless
steel standard was used as the reference. For a 2-2 com-
posite with 44% PZT-3H ceramic in a Spurr epoxy ma-
zrix. the required acoustic impedance for the matching
laver in frequencies near fd = 0.5 (MHzmm) is about
4.43)\Rayls. A series of polymer were examined and
<he acoustic velocity was determined from the time of
dight technique. Combined with the data on the den-
sit-. the acoustic impedance of the material can be ob-
rained. A Hysol epoxy (EE1068) was chosen because the
acoustic impedance Z = 4.68 MRayls (p = 1610 kg/m?.
. = 1.3634x 10° N.'m". and c,, = 3.432x10° N/m?) is
quite close to the required value.?® For a fixed thickness
: of the matching laver. the frequency position of the
~inimum reflection can be determined and the ratio of
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Fig. 14. Schematic of the set-up used to measure the reflection
coefScient of 2-2 composites and matching laver system. [n order
10 obtain the phase information of the reflection coefficent, the
distance between the prooe transducer and the 2-2 composite is
maintained the same as that between the probe and the stainless
steei standard.

4t. \ is obtained. By varving the thickness of the match-
ing laver. the dependence of 4t/) on the frequency can
be obtained. The data is presented in Fig. 13(b) (open
circies) and apparently. there is an excellent accord be-
rveen the theoretical prediction and experimental data.

3. Summary

The reflection and transmission of a plane acoustic
wave at a medium-composite interface and the issues re-
:ated to the design of marching laver for a composite
are analvzed based on an approach developed recently.
~pich can address explicitly the non-uniform field distri-
butions due to the keterogeneity structure of a piezoce-
ramic polymer composite. The effective input acoustic
impedance Z,, of the composite at the interface was eval-
uaated and both the amplitude and phase show a strong
Zequency dependence. It was found that for a solid
medium. Z,, will change if the shear stiffness constant of
the medium changes. It was demonstrated that this dif-
ference originates from the non-uniformity of the surface
<ibration distribution of the composite at the interface
which depends crucially on the shear stiffness constant
of the medium.

Since for a piezoceramic polymer composite. it is the
ceramic phase which performs the energy conversion be-
tween the acoustic and electric forms. how much acoustic
energy can enter the ceramic region is one of the most
‘mportant parameters in a composite transducer design.
In the paper., we show that even though the effective
transmission coefficient increases as the frequency is in-
creased. the amount of acoustic energy entering the ce-
ramic region actually decreases. Therefore, there may
be a trade-off between the bandwidth. which is related
to the transmission coefficient. and the sensitivity in the
composite transducer design.

rom the fact that there is more than 1800 phase
change in the reflection from the medium-composite in-



Jpu. J. Appl. Phys. Vol. 36 (1997) Pt. 1, No. 11

terface. it is shown that the matching layer thickness is
no longer equal to the quarter wavelength but smaller
than that. In addition, the acoustic impedance of the
matching layer will also be affected by the phase of Z,,
of the composite, although the effect is not as significant
as that in the thickness of the matching layer. These
results are confirmed experimentally.
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Abstract:

A model is derived for the analysis of the resonance behavior of 1-3 piezocomposites, including
the thickness mode and lateral mode. The influence of various losses in a 1-3 composite on the
dispersion curves and the quality factor for the thickness mode is examined. It is found that the
elastic loss in the polymer has a marked effect on the lateral mode such as reducing the cut-off
frequency to zero and producing a large attenuation to the wave propagation. For the thickness
mode, it is found that the reduction in the quality factor of a composite compared with
piezoceramic is mainly due to the coupling between the two constituents. Even for a composite
with the mechanical Q of the polymer higher than that of the ceramic, the mechanical Q of the
composite is still lower than that of the ceramic except when the ceramic volume content is very
low. Hence, in most of the situations, the mechanical Q of the ceramic phase plays a major role

in determining the quality factor of a 1-3 composite transducer.



I. INTRODUCTION

Piezoceramic polymer composites offer many advantages over single phase materials for
many transducer applications such as underwater sonar, ultrasonic imaging for medical and
NDE applications, and stress sensors [1], [2]. The complementary properties of the polymer
and ceramic phases in the electric and mechanical responses make it possible to tune the
composite properties over a wide range. On the other hand, in order to fully make use of these
advantages and to reduce the manufacture costs of composite, it is necessary and still a
challenge to establish a quantitatively structure-property relationship which links various
design parameters in the constituents to the final device performance and reveals new
properties of composites that are absent in single phase materials.

In the past two decades, a great deal of effort have been devoted to analyze and model the
transducer performance of piezocomposites [3]-[9]. The model (quasi-static model) developed
by Smith et al. [3] and Hashimoto et al. [4] based on the isostrain and isostress concepts in
treating the coupling between the constituent phases provided a qualitative prediction on the
effective piezoelectric properties of 1-3 composites as a thickness resonator. It was shown

from the model that the thickness coupling factor k. of a composite can approach the
longitudinal coupling factor k;l;3 of the piezoceramic rod, which agrees with experiments for

composites with a high aspect ratio t/d, where t is the thickness and d is the periodicity of the
composites. Because of its simplicity, the quasi-static model offers a convenient means for a
quick estimation of the composite parameters. Auld et al. pointed out the existence of the stop
band edge resonance in both 2-2 and 1-3 composites due to the periodic arrangement of the
ceramic elements in these composites [S], [6]. However, in order to address quantitatively

many realistic issues of a composite material such as the influence of the aspect ratio and shape



of the ceramic rod in a 1-3 composite on the performance, finite element method (FEM) is
often used [7]-[9].

More recently, based on the guided wave approach, an analytical model was developed
which is capable of treating many practical issues related to the ultrasonic performance of a 2-
2 composite. By combining this with the eigenmode expansion, the ultrasonic properties of a
finite thickness 2-2 composite can be analyzed quantitatively and many new features were
predicted and confirmed experimentally [10], [11] Compared with FEM, the model offers
physical insight into the ultrasonic performance of a 2-2 piezocomposite. It is the objective of
this work to extend the model to 1-3 piezocomposites.

In general, a 1-3 composite manufactured by the commonly used dice-and-fill technique
[12], as shown in Fig. 1(a), has a three dimensional structure which, although can be treated
using the approach in references [13] and [14], is quite complicated mathematically. To
simplify the mathematics of the problem, we will make use of the concentric unit cell to
approximate the unit cell of a 1-3 composite which has the ceramic rods arranged in a
hexagonal lattice, as schematically drawn in Fig. 1(b). Such an approximation has been used
in treating a 1-3 composite for hydrostatic applications earlier which reduces the problem to a
two dimensional one [15]. We will brieﬂy derive the guided wave solution for a 1-3
composite with the unit cell in Fig. 1(c) which is unbounded in the z-direction. Based on this,
the ultrasonic properties related to the thickness resonance will be evaluated and compared
with experiment. Comparison will also be made with the quasi-static model to show the range
of its validity. We will pay special attention to the mechanical Q in a composite material and

show that the mechanical Q of a composite is not a simple extrapolation between the two end




constituents and can be much smaller than those of both end constituent phases (ceramic and

polymer).

II. WAVE PROPAGATION IN AN UNBOUNDED 1-3 PIEZOCOMPOSITE

For the unit cell shown in Fig. 1(c), the axial-symmetry along the poling direction of
piezoceramic (the z-direction) reduces this three dimensional problem to a two dimensional
one. The cylindrical coordinate system is chosen such that the z-axis is along the poling
direction of the piezoceramic rod, the r-axis is along the radial direction and the -axis is
perpendicular to the r-z plane, respectively. Because of the axial-symmetry, all the properties
do not depend on the 8-coordinate and hence, the governing equations for the dynamics of a 1-

3 piezo-composite become

1 2
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The symbols adopted in this paper are summarized as follows: T, and S, are the stress and
strain tensor components, u, is the elastic displacement vector, p is the density, D, is the electric
displacement vector and E, the electric field. The relevant material coefficients are: e, is the
piezoelectric coefficient, ¢, is the elastic stiffness, and €, the dielectric permittivity. Equation
(1) holds for both polymer and piezoceramic phases.

The constitutive equations for the piezoceramic in the cylindrical coordinate system are
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For the polymer phase, e, in (2) is zero. The superscripts E and S indicate that the coefficients
are under the constant E field and constant strain conditions, respectively. Under the quasi-
electrostatic approximation, the electric field E is related to the electrical potential ¢
E=-Vo. 3)
Combining (1), (2), and (3) yields differential equations governing the elastic
displacement u,, u,, and the electrical potential ® in the piezoceramic rod and in the polymer,
respectively [11]. The general solutions for the piezo-active modes in the ceramic rod have the

form:

u; =3 R £ Jo(hr)sin(Bz)

=2 RigJ,(h{r)cos(Pz) (C:))

=Y Rt/ J,(h{r)sin(Bz)

i

where i runs from 1 to 3 and the superscript ¢ denotes the ceramic. J, and J, are the zeroth and

first order Bessel functions. For each B, there are three h, , h and h{, corresponding to the



quasi-electromagnetic, quasi-longitudinal, and quasi-shear waves in the piezoceramic rod,

respectively. ff, g’ and # are the cofactors of A, (i), A, (i), and A, (i) of the determinant:

caB?+cih? —po? (ch+ci ) B’ +e h?
[M,]=|  (ch+cinB  cER+cEBI-pw’ (e, +eyhP 5)
essB2 +elSh2 (e,5+e; )hp "(Elslhz +£§3B2)

(where h is replaced by A‘ for i=1, 2, and 3, respectively). The time dependent term exp(-jox)

is omitted in (4), where wis the angular frequency [11].

Similarly, the solutions for the polymer phase can be obtained [11]

wl =3 fP(RJo(hlr)+ QY (hr))sin(Bz)
uf = Zgip(Rip‘,I(hi’r) + Q.‘Pyl (hipr)) COS(BZ) (6)

@ =(C/J,(h]r)+CrY,(h'r))sin(Pz)
where i=1, 2 and the superscript p denotes the polymer. Y,and Y, are the zeroth and first order
Hankel functions. f? and g/ are the cofactors of A,(i), A,,(1) of (5) with all the material

parameters replaced by those of polymer phase, and

(k') =(k!)* =B, (h?)* =(k?)* -B? and (h')* = -B* (7

© © e e
where kf =—-, ki =—, v/ and v} are the longitudinal and shear wave velocities in the
v
L T

polymer phase, respectively.

The expressions of the stresses and electric displacement in the ceramic rod and the
polymer phase can be obtained by substituting the equations of the elastic displacement and
electric potential into the constitutive equations (2) (for the ceramic rod) [11]

The boundary conditions at the ceramic polymer interface (r=r,) are



u; =ul,u; =ul, T =T?, T =T (8a)

®° =’ D =D? (8b)
and the symmetry conditions at I=T, require

T?=0, u’=0,D"=0 (8c)
From (8), the relationship between @ and B, the dispersion relations, can be determined. For
each pair of @ and B, the relationships among R¢, R}, Q7 and C/ (in (4) and (6)) can be

obtained [11]

III. DISPERSION CURVES, RESONANCE MODES, AND EFFECTIVE ELECTROMECHANICAL
PROPERTIES OF A 1-3 PIEZOCOMPOSITE

Shown in Fig. 2 are the two lowest branches of the dispersion curves for a 1-3
piezocomposite which has the parameters of PZT-5H piezoceramic and Spurr epoxy with
ceramic volume fraction of 40.5%. In this paper, except otherwise specified, the composites
have PZT-5H as the piezoceramic and Spurr epoxy as polymer matrix. The parameters of the
PZT-5H piezoceramic and the Spurr epoxy are presented in table I, where the real part of the
material parameters is from [16]. The general trend of the dispersion curves in the Fig. 2
resembles that of the 2-2 piezocomposite [11]. At small Pr, limit, the first branch corresponds
to the longitudinal wave propagation along the z-direction, that is, u_ is the dominant
displacement which is more or less uniform and in phase along the r-direction. The phase
velocity V,, =/ is the effective longitudinal wave velocity of the 1-3 piezo-composite. The

second branch corresponds to the lateral resonance arose from the periodic structure of the 1-3



piezocomposite in the plane perpendicular to the z-axis. The displacement u, of the polymer is
much larger than that of the ceramic and the phase difference between them is 180°.

Under the assumption that the wave length A in the z-direction (B=2n/1) is equal to two
times the thickness t of the 1-3 piezocomposite plate (the condition for the thickness
resonance), the theoretical dispersion curves can be compared with the experimental results
which are obtained from the 1-3 piezocomposite samples with different thickness [17]. The 1-3
composites were fabricated using dice-and-fill technique and hence, have a unit cell of Fig.
1(a). In the comparison, the composite with the same ceramic volume content is compared.
As a result, the lateral mode resonance from the experimental data which is from composites
with the unit cell of Fig. 1(a) is lower than that from the model which is based on the
composites with unit cell of Fig. 1(c). Due to this reason, no direct comparison can be made
on the lateral mode frequency. In an earlier publication [17], it has been shown that over a
large volume fraction range (in the ceramic volume content range approximately from 20% to
75%), the lateral mode frequency is mainly determined by the width of the polymer gap. For
the composites with the same ceramic volume content, the polymer gap width responsible for
the lowest frequency lateral mode for a composite with the unit cell of Fig. 1(a) (experimental
composites) is 0.866 times that of a composite with the unit cell of Fig. 1(b) (composites in the
model). By taking this factor into consideration in the comparison, the experimental and
model results can be compared, which is shown in Fig. 2(b) and apparently, the agreement
between the two is quite satisfactory.

The evolution of the resonance modes with Br,, where 1, is the half of the period d (d=2r,)
of the 1-3- piezocomposite, can be summarized as following. At small Br, on the dispersion

curves, the frequency of the fundamental thickness mode from the experiment falls on the first



branch as marked by the black dots, and the frequency of the first lateral mode should fall on
the second branch. After the crossover region B, the modes interchange the positions on the
dispersion curves where the thickness mode is in the second branch while there is a weak
resonance at a frequency below the thickness mode and it falls on the first branch. Here, the
thickness mode is defined as the one with higher electromechanical coupling factor. The
results presented in the Fig. 2 show that there is an excellent accord between the theoretically
derived thickness resonance frequencies and the experimentally observed ones when Pr,<1.
The discrepancy at sz >1 is due to the lower lateral mode frequency in the experimental
samples which have a square shaped unit cell. The coupling between the two modes near the
cross over region results in a lowering of the resonance frequency of the thickness mode at r,
>1.

The longitudinal wave velocity of a 1-3 piezocomposite is determined from the dispersion
curves using V =w/B. Presented in Fig. 3(a) are the comparison of the theoretical and
experimental results of the longitudinal wave velocity V” as a function of d/t (t is the thickness
of the composite) for a 1-3 piezocomposite with 40.5% ceramic volume fraction. The
experimental results are obtained by the resonance method using HP 4194 Impedance
Analyzer for the 1-3 piezocomposite plate at different thickness t and V°=2 £t (£, is the parallel
resonance frequency). The agreement is very good when d/t is less than 0.65. At d/t higher
than 0.65, the experimental values deviate from that of the theoretical one. As has been pointed
out earlier, this is due to the lower lateral mode frequency from the experimental samples.

Shown in Fig. 3(b) is the dependence of the longitudinal wave velocity on ceramic volume

fraction for a 1-3 piezocomposite with different Pr,, a parameter inversely proportional to the




aspect ratio of the unit cell. The lowering of V® for Br,=1.0 shown at the low ceramic volume
content region in the figure is due to the coupling of the thickness mode with the lateral mode.
For composites with higher ceramic volume content, this coupling will occur at higher Br, and
correspondingly, the lowering of V° with Br, will occur at higher values. Away from the
coupling region (the region marked by B in the Fig. 2), V° exhibits very little dependence on
Pr, which is consistent with the data in Fig. 3(a) and earlier experiment results [18) For the
comparison, V° from quasi-static model are also shown in Fig. 3(b) [3], [4]. Clearly, V° from
the quasi-static model is higher than that determined from this mode! and experimental data.
The thickness mode electromechanical coupling coefficient of a 1-3 piezocomposite is

derived in the model from [16]

E
k? = 1—(:—',,)2 ©)

!

where v and v} are the longitudinal wave velocity under constant E and constant D

conditions, respectively. Presented in Fig. 4(a) is the dependence of k on ceramic volume
fraction for a 1-3 piezocomposite with different Br,. Again, the reduction in k_at the low
ceramic volume fraction region for the curve with Br,= 1 is due to the coupling to the lateral
mode. At fr, away from the coupling region, k exhibits very little dispersion. For the
comparison, the results from the quasi-static model is also presented in the figure and k,_from
the quasi-static model is less than that from this model even when 1/t approaches zero, where
the thickness of the composite is much larger than the period.

The thickness coupling factor for a 1-3 piezocomposite with 40.5% ceramic volume

content was evaluated experimentally using the relation [19]:

10



n f, -/,

E.f_-‘tan(_

! 2f, 2 f,

) (10)

where f, and f are the series and paralle] resonance frequencies of the 1-3 piezocomposite
plate, respectively. The dependence of the theoretical and experimental electromechanical
- coupling coefficient k, on the aspect ratio t/d is shown in Fig. 4(b) for composites with 40.5%
ceramic content. The agreement between the two is excellent for d/t less than 0.65. At d/t
above 0.65, the deviation of the theoretical value from the experimental one is due to the lower

lateral mode frequency of the experimental samples (Fig. 2) as has been pointed out earlier.

IV. LOSSES IN 1-3 PIEZOCOMPOSITES

In the previous sections, the losses in the materials have not been included. However, as
has been demonstrated in many experiments, loss in a 1-3 piezocomposite is much higher than
that in piezoceramic, and therefore, it is very important to include the losses in the analysis.

In general, there are ﬂuee kinds of losses in a piezoelectric material, i.e. mechanical loss,
dielectric loss and piezoelectric loss. In the polymer phase, there are only mechanical loss and

dielectric loss. The losses in the ceramic phase can be expressed by complex constants [20],

E E  .E'
cl_] =cij +JCij
€ =6 -e-jeij (1D
S s .5

Ej =&j — JEy

and the losses in the polymer phase can be expressed as
Cj =c + jcij

(12)
€=¢ —je
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From the fact that the attenuation in piezoceramic is proportional to frequency, the imaginary

part of the parameters in the ceramic can be assumed constants [21]. While in the polymer

phase, the main loss mechanism is due to viscosity, therefore, Cj = on;, where n, is the

viscosity coefficient of the polymer.

Fig. 5 illustrates the effect of polymer loss on the dispersion curves of a 1-3
piezocomposite with 40.5% of ceramic volume content. In the calculation, the losses from the
ceramic region are assumed to be zero. In comparison with Fig. 2, it is found that the first
branch of the dispersion curves are not strongly affected by the loss in the polymer phase.
However for the second branch, which corresponds to the lateral mode resonance, there exists
no cut-off frequency when loss is introduced, and this branch represents the attenuated guided
wave propagation because the imaginary part of the wave vector increases rapidly when
real(Br,) reaches zero as shown in Fig. 5(b). In contrast, the losses in the ceramic phase (when
the loss in the polymer is assumed to be zero) do not produce marked changes in the first two
branches.

The quality factor Q (or the mechanical Q) for the thickness mode of a 1-3

piezocomposite is evaluated from the dispersion curves from the relation:

Q= 2%— (13)
1

Where B, and B, are the real and imaginary part of the wave vector B, respectively. Presented in
Fig. 6 is the Q of a 1-3 piezocomposite as a function of the ceramic volume fraction evaluated
at fr,=0.1. The loss parameters used in the calculation are those of PZT-5H for the ceramic
phase and Spurr epoxy for the polymer (listed in table I). Those parameters are obtained from

several sources. The dielectric losses for the PZT-5H ceramic and the elastic losses in Spurr

12



epoxy were measured. The elastic losses and the piezoelectric losses for the PZT-5H ceramic

are taken from [22] and [23]. For the loss part of the elastic compliance s% and le3 which is
not available, it is assumed that 51E1 and s§:3 have the same loss tangent and the loss tangent of

s1E3 is the same as that of lez. The quality factor calculated based on these parameters for a

PZT-5H ceramic plate is 75, which is close to that measured directly (Q=60) based on IEEE
standard [19]. The elastic loss for the polymer is evaluated at 117 kHz which yields a
mechanical Q=2222 for the polymer. The mechanical Q in the polymer phase is inversely
proportional to frequency while in the ceramic phase it is a constant.

The results in Fig. 6 show that the quality factor of a 1-3 piezocomposite is less than that of
both the ceramic and polymer for the composites evaluated. For the comparison, the quality
factor for the thickness mode of several 1-3 composites with different ceramic content and
single phase PZT-5H ceramic plate was experimentally determined [19]. The experiment data
is also presented in the figure which is consistent with the theoretical results. The lower value
of the experimental Q for single phase PZT-5H ceramic plate compared with that from the
model may be the main reason for the lower Q of the experimental samples compared with
model results. The result here is quite different from the real part of the elastic constant of a 1-
3 composite which always lies in between the two end phases. This is also in contrary to the
common belief that the low mechanical Q in a 1-3 composite is a result of the loss in the
polymer phase. In fact, in the composite evaluated, the mechanical Q of the polymer phase
(Spurr epoxy) is much higher than that of the piezoceramic, while the Q of the 1-3 composite

is lower than that of the pizeoceramic. The similar conclusion can also be obtained from the

13




quasi-static model. which is presented in Fig. 6, where the quality factor is equal to 1/tand of

5?3 (the effective elastic constant of the composite at the constant electric displacement D).

To examine whether the observed effect is due to the piezoelectric coupling, the quality
factor for a 1-3 composite without piezoelectricity is also evaluated and the results are
presented in Fig. 7 where the parameters are taken from Spurr epoxy and unpoled PZT-5H
ceramic (no piezoelectric effect) and the mechanical Q of the ceramic is about 200.
Apparently, the quality factor here is still less than that of both ceramic and polymer when the
Q of the polymer phase is larger than that of the ceramic. On the other hand, when the Qof
the polymer phase becomes smaller than that of the ceramic, the quality factor of the
composite lies between that of the polymer and ceramic.

To elucidate how different losses of the ceramic phase in a composite influence the quality
factor of the composite transducer, calculation is carried out for model composites with
different losses in the ceramic. Presented in Fig. 8 is for a 1-3 piezocomposite in which the
piezoceramic has dielectric loss only (no piezoelectric and elastic losses) and piezoelectric loss
only (the dielectric and elastic losses are assumed to be zero). In both cases, the trend of
quality factor with the ceramic volume fraction is quite similar to those in the pure elastic case
as shown in Fig. 7. Apparently, through the piezoelectric coupling in the material, both the
piezoelectric and dielectric losses reduces the mechanical Q of a 1-3 composite. It should be
pointed out that in general, a piezoelectric loss may not imply a real energy loss. Although for
the materials examined here, the piezoelectric loss reduces the mechanical Q of the thickness
resonance mode, it can also be an energy gain in other cases which means an increase in the

mechanical Q, as has been pointed out by Holland [22]
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Presented in Fig. 9(a) are the results when all the losses in a 1-3 composite are included
(data in table I), where the different polymer loss can be corresponding to different thickness
resonance frequency since the elastic loss in the polymer increases linearly with frequency. It
can be seen that at high ceramic volume content (for example, >40%), the polymer loss does
not have a significant effect on the quality factor of a composite transducer. For example, as
the mechanical Q of the polymer is reduced from more than 2000 down to about 10, the Q of
the composite changes only from about 63 to 47 for a composite of 40% ceramic volume
content. On the other hand, the losses in the ceramic phase seem to play a more important role
in determining the mechanical Q of the composite. To illustrate that, in Fig. 9(b), the Q for a
composite with losses from the polymer phase only, i.e., there is no loss in the piezoceramic,
and for a composite with all the losses included is plotted as a function of frequency, where the
ceramic volume content is 40% and the quality factor of the ceramic (PZT-5H) is 75. This is
understandable. Since the quality factor is defined as the ratio of stored mechanical energy vs.
mechanical energy loss in one cycle and as seen from table I, the elastic constants of the
ceramic are more than 10 times higher than those of the polymer, only when the loss in the
polymer becomes much higher than that of the ceramic, will it have significant effect on the
quality factor of a piezocomposite, as shown in Fig. 9(b).

Clearly, the coupling between the ceramic and polymer in a composite changes the phase
relationship between the stress and strain in both phases. Shown in Figs. 10 and 11 are the
phase angle & between the stress (T,) and strain (S,) along the z-direction at the polymer
center (r=r,) and ceramic rod center (r=0) as a function of Q°/Q", the ratio of the mechanical Q
in the two phases. Two compositions are examined, one with the ceramic content at 10% (Fig.

10) and the other at 40% (Fig. 11). In the figures, the dashed lines are the § in the single phase
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material and the solid lines are the & in the composites. Apparently, for the polymer phase, the
8 is reduced when the polymer is in the composite, and for the ceramic, it is increased in the
composite. Further more, the reduction of 8 in the polymer increases with ceramic volume
content of the composite, and as shown in Fig. 12, composites with ceramic volume fraction
higher than 45%, the phase delay in the polymer becomes positive. Hence, the large increase
of the § in the ceramic phase of the composite is the main reason for the drop in the quality
factor of composites since, as pointed out, the high elastic constants in the ceramic phase
implies that in most cases, the loss in the ceramic region plays a dominant role in controlling

the mechanical Q of the thickness mode of a composite.

V. SUMMARY

A dynamic model is derived for the analysis of the ultrasonic performance of 1-3
piezocomposites. To simplify the mathematics, 1-3 composites with the concentric unit cell
was treated in the model which should closely resemble the unit cell of a 1-3 composite with
ceramic rods arranged in a hexagonal lattice. It is shown that the mode! can describe the
tlﬁckness resonance of a general 1-3 composite quite well in the frequency range away from
the mode coupling region. By taking into account of the difference in the width of the polymer
gap between composites with different rods arrangements, the model may be used to describe
the lateral mode for composites in the volume fraction region (about 20% to 75% ceramic
volume fraction range) where the lateral mode frequency is mainly determined by the width of
the polymer gap responsible for the mode.

In the paper, special attention is paid to the losses in a 1-3 composite and it is found that

the mechanical loss in the polymer has a marked effect on the cut-off frequency of the lateral
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mode. For the thickness resonance, the quality factor of a composite is largely determined by
the mechanical Q of the ceramic and its coupling to the polymer phase, which seem to be in
contrary to the common belief that the low Q in a composite is due to the loss in the polymer.
Even for a composite with the mechanical Q of the polymer larger than that of the ceramic, the
quality factor (or mechanical Q) of the composite is lower than both constituents. It is found
that the phase delay between the strain S_ and stress T, in the ceramic increases significantly
in the composite compared with the single ceramic material, which is the main reason for the
reduction of the quality factor Q in a composite. On the other hand, the coupling with the
ceramic phase reduces the phase delay between the strain S, and stress T, in the polymer when
compared with that in the single phase polymer. Due to the piezoelectric coupling, both the

dielectric and piezoelectric losses affect the quality factor of a piezocomposite.

17



Table 1. The material parameters for the PZT-SH and Spurr epoxy used in the model

calculation

Ceramic: c{;=12.72x10"(1.0+i8.0x10°) N/m’, ¢L;=11.74x10°(1.0+j8.0x10°) N/,
¢ =7.95x10°(1.04j6.5%10”) N/m?, ¢ [3=8.47%10"°(1.0+j6.5x10”) N/,

€22 =2.3x10°(1.0+]1.2x10%) Nim’; € 3, =17006,(1.0-12.7x10%), € 5,=14706(1.0-j2.7x10%,

€,,=23.09(1.0-j5.4x10") C/m’, e,,=17.0(1.0-j5.0x10*) C/m’.
e,=-6.6(1.0-j7.2x10”) C/m’, p°=7500 kg/m’.

Polymer: cl’; =5.41x10° N/m’, CL=1.307><10° N/m’. 1,=20.74 N/m’s, n,=11.0 N/m’s;

£11=4.0¢,, p"=1100 kg/n’.
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Figure captions

Fig. 1. (a) Schematic drawing of a 1-3 piezocomposite fabricated from the Dice-and-Fill
technique and having a square unit cell. (b) Schematic drawing of a 1-3 composite with
ceramic rods arranged in a hexagonal periodic array. A concentric unit cell can be used to
approximate hexagonal unit cell. (c) A concentric unit cell and the coordinate system for a 1-
3 composite.

Fig. 2. Dispersion curves of a 1-3 piezocomposite with 40.5% ceramic volume fraction.
The dots are experimental results from composites as in figure 1(a) and solid lines are from the
model for composite as in Figs. 1(b) and 1(c). Region B represents the mode coupling region.

Fig.3. (a) Longitudinal wave velocity of a 1-3 piezocomposite with 40.5% ceramic
content as a function of d/t. The open circles are the experimental results and solid line is from
the model. (b) The longitudinal wave velocity as a function of ceramic volume fraction for
composites with different Br,. For the comparison, the result from the quasi-static model is
also included.

Fig. 4. (a) The electromechanical coupling coefficient k, as a function of ceramic volume
fraction for composites with different Br,. For the comparison, the result from the quasi-static
model is also included as the solid line. (b) The electromechanical coupling coefficient k ofa
1-3 piezocomposite with 40.5% ceramic content as a function of d/t. The open circles are the
experimental results and solid line is from the model.

Fig. 5. Effect of the loss in the polymer phase on the dispersion curves of 44% 1-3
piezocomposite. Solid lines are from 1,,=20.737 N/m’ s and 1,,=10.994 N/m’ s, and dotted

lines are from 1,,=8%20.737 N/m’s and 1,,=8x10.994 N/m’s.
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Fig. 6.  Quality factor Q of 1-3 piezocomposites as a function of ceramic volume
fraction. Q is evaluated at fr, = 0.1 and f=117 kHz (n,,=20.737 N/m’s and 1,,=10.994 N/m’s
for the polymer). The result from the quasi-static model is included as the dashed line. The
experimental data is represented as black dots.

Fig. 7. The influence of elastic loss of polymer on the quality factor of a 1-3
piezocomposite as a function of ceramic volume fraction, where Q,{: for each curve (from top

to bottom) is 2222, 222, 111, 22.2, and 11.1 respectively. The losses for the ceramic phase is
from depoled PZT-5H where the piezoelectric coefficients are zero.

Fig. 8. The contribution of dielectric loss (no elastic and piezoelectric losses) and
piezoelectric loss (no dielectric and elastic losses) of piezoceramic to the quality factor of a 1-3
piezocomposite as a function of ceramic volume fraction, where the tand of dielectric constant
is 2% and the tand of the piezoelectric coefficient e; is 2%. The curves are evaluated at
Br,=0.1 and Q_=2222 for polymer.

Fig. 9.(a) The quality factor of a 1-3 piezocomposite with both the elastic loss of the

polymer and the elastic, dielectric and piezoelectric losses of the piezoceramic, where the

quality factor Q,I: (polymer) for each curve (from the top to the bottom) is 2222, 222, 111,

44.4,22.2, and 11.1, respectively. (b) The quality factor of a 1-3 composite with 40% ceramic
content as a function of frequency when the loss is from the polymer only (dashed line) and
when all the losses are included (solid line).

Fig. 10. (a) Comparison of the phase delay between the strain and stress in polymer as a
single phase material (dashed line) and in composite (solid line). (b) Comparison of the phase

delay between the strain and stress in ceramic as a single phase material (dashed line) and in



composite (solid line). Apparently, by compositing, the phase delay in the polymer is reduced
while in the ceramic, it is increased. The ceramic volume content is 10%.

Fig. 11. (a) Comparison of the phase delay between the strain and stress in polymer as a
single phase material (dashed line) and in composite (solid line). (b) Comparison of the phase
delay between the strain and stress in ceramic as a single phase material (dashed line) and in
composite (solid line). The ceramic volume content is 40%.

Fig. 12. The change of the phase delay § in the center of the polymer region and the center
of the ceramic region of a composite as a function of the ceramic volume content. The polymer
has a Q=2222 and the calculation is carried out at Br,=0.1. The corresponding quality factor of

the composite is also included in the figure.
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Diffuse phase transition in ferroelectrics with mesoscopic heterogeneity: Mean-field theory
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The diffuse phase transition in ferroelectrics with mesoscopic heterogeneity has been discussed within the
context of a superparaelectric model by using the Ginzburg-Landau formalism. In the Curie rezion ferroelec-
trics with mesoscopic heterogeneity are treated as ‘“superparaelectrics’” consisting of a mass of polar clusters,
each of which has Ising character. Based on the mean-fieid theory, the influence of the finite-size effects of
polar clusters on their swuctural instability has been discussed by considering a coherent lamice coupling
between two structuraily different regions. In particular. we have analytically derived the explicit solutions of
the distribution of local polarizations. In turn. the processes of polar nanophase precipitation and coarsening
have been also discussed in conjunction with the local chemical or structural inhomogeneity. Moreover, we
have also analyzed the relationship between the local poiarizadon distribution and the static dieiectric suscep-
tbility in ferroelectrics with the nanometric scale heterogeneity. The width of the Curie region is dependent
upon the distribution of the sum of localized correlation leagth. which reflects the size distibution of hetero-
geneity. The presented analysis reveals that the diffuse phase Tansiton is closely associated with he existence
of nanometric polar clusters and their physical size distritudon. Inmriguingly, our theoretical resuits bear a very
close resemblance to most experimental observations. {S0163-1829(97)03518-2]

L INTRODUCTION

The dieiectric response in ferroeiectrics is mainly deter-
mined by the characteristics of Tansverse-optic phonons or
soft modas. which virtually redect the relative movement
betwesn cations and anions. Usuaily the dielectric constants
in ferrceiscirics can be estimated by the Lyddane-Sachs-
Teller :LST) relation. or their phase Tansition behavior can
be quite accurately described by mean-field theories, such as
the Landau theory.! In normal feroelectrics. as a rule, the
dielecwic coefficient peaks at the Tansition temperature T,
showing 2 tvpical Landau behavicr. However, a variety of
ferroelec=ics. such as dielectric composites,'™> complex per-
ovskite Zerroelectrics.*® disorder or random dipole
ferroelecics.>” ferroelectrics with graded compositions,**
and even aanostructured ferroelecmcs and ceramics with ul-
trafine grzins.'%!? exhibit a very Sroad peak near their Curie
temperarures. whose dielectric ccefficients often are larger
than those suggested by the LST reiation. The phase transi-
tons in these materials are called as the diffuse phase tran-
sition {DPT) because they are characterized by broad anoma-
lies in the dielectric response near tansition temperature
regions. resuiting in an exceeding snhancement of dielectric,
pyroelectTic. elastic-electric. and optoelectric properties
within a *ide temperature range. More precisely, the princi-
pal signature of the DPT is based on the fact that the dielec-
tric susceptibility near the Curie region is governed by the
relation %314

1 1 (T-T.n* | << -2 a
)(_.[7+ N ' sa - )

23

5

0163-:1829,97/55(18)/12067(12)/S10.00

ratker tzan the usual Curie-Weiss law obeyed by normal fer-
rcelecics. The coefficient a in Ea. (1) increases when the
Tansition becomes more diffused.

In zeneral. the common fearure shared by all ferroelec-
Tics with the DPT is that they possess compositional varia-
dons. suctural inhomogeneides. or phase heterogeneities in
the physical scale from micron or submicron range to the
atomic level. In fact, physically the inhomogeneity within
ferroelacics influences the mancer in which the materials
2xaibit Jerroelectricity.

Excerimentally it has besn substantially reported
that a ~ariety of complex mixed perovskite ferroelectrics
with DPT behavior. such as Pb(Mg, Nb)O,; (PMN),
{Pb. LaiZr. Ti)O; (PLZT). or iSr. Ba)Nb.Og, have a truly
nanometer scale heterogeneity in composition. These types
of Jerrcelectrics are also called ferrcelectric relaxors because
they aiso exhibit a significant dispersion of dielectric re-
sponse near the Curie range. giving rise 10 sizable nonlinear
dieleczic and electromechanical pnenomena.

The nature of the diffuse phase transition in ferroelectric
reiaxors fas been a long standing puzzle since their detection
nearly four decades ago. The high interest in the phase-
Tansiucn behavior of ferroelectric relaxors not only resides
in their fundamental significancs. bur also it is due to their
practicai importance'’ because ferroelectric relaxors have the
largest inwinsic dielectric constants among all materials on
earth.

Forty vears ago Smolenskii and co-workers pro-
vided an intuitive picture of the diffuse phase transition in
complex ferroelectrics. Through the assumption of a local
distibution of phase-transition points and the concept of mi-
croregion (Kanzig region). they smpirically estimated the
broadening of the phase transition. aithough they could not

13.16-18
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l L FIG. 1. Schematic representation of the distri-
bution of local order parameters in an inhomoge-
neous system.
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offer a solid physical ground about their assumption. Follow-
ing Smolenskii's pioneer work. many important researches
about ‘erroelectric relaxors were carried out in the 1960's—
1990°s. and a number of models have been proposed for
interprering the dielectric response of the relaxors. Here we
do not artempt to review the enormously voluminous experi-
mentai and theoretical literature in this area. However. it
should be ¢mphasized that Cross*® proposed a superparaelec-
tric mcdei which suggested that the DPT in the relaxors is
generzted by their mesoscopic heterogeneity.

Nevertheless so far the detaiied physical process of the
dirfuse ~hase transition in these materials has not been un-
dersiced completely vet. Unresolved questions include. the
exac: nature of the diffuse phase Tansition and the intrinsic
connec:ion between the heterogeneiry and their dielectric re-
sponse. Particularly interesting is the phase-transition width
or the diffuseness of the phase Tansidon, which influences
practiczi applications. An intriguing question here is: does
the width of the Curie region really. as expected before. de-
pend on the dipole-dipole interaction between clusters. or
does another generic cause refated with the microstructure
itself zovern the diffuseness of the phase transition? As a
mattar of fact, a more profound fundamental issue is: is it
possibie to artificially engineer and manipulate ferroelectric
phase wansition by controlling the mesoscopic heterogeneiry
in orcer o tailor and design dielectric properties of ferroelec-
tric dielectrics?

It is the thesis of this paper that the origin of the diffuse
phase transition in ferroelectric relaxors lies in a size effect
and des up with their heterogeneitv and relevant physical
scaie. In this work. we attempt to quantify the correlation
berwesn the diffuse phase transidon in relaxors and their
mesoscopic heterogeneity, although experimentally enor-
mous 2vidence has strongly suggested that the formation of
polar ciusters with nanometer size. on a scale significantly
larger than the lattice constant. is responsible for their diffuse
phase transition.'

In iight of the complexity of the topic, we have organized
this parer as follows. In Sec. II. we present an extended
Ginzburz-Landau model for the case of the inhomogeneous
svstem dv constructing a simple but rather realistic free-
enerzy 2guation for such a system. In Sec. III. we evaluate
the <hift of local phase-transition points. and the explicit so-
lutions >t polarization distribution are given by a continuum
thecrr. Section IV contains a quantitative analvsis of the

fearures of diffuse phase transition of ferroelectric relaxors,
in which we discuss the relationship between the behavior of
local polarization and overall dielectric response. We calcu-
late the temperature variation of order parameters along with
the responses to a weak external field. and we show how the
overall phase transition is conwolled through mesoscopic
heterogeneities. Finally our conclusions are summarized in
Sec. V.

0. THEORETICAL ANALYSIS: FREE-ENERGY
EQUATION IN A COHERENT SYSTEM

The =ssence of the present work. as will emerge below, is
an erffort to quantitatively analyze the dielectric response and
the phase stability of polar clusters in relaxors in connection
with their physical sizes and the features of their diffuse
phase ansition. One of the primary difficulties concerning
DPT in relaxors is to describe spatial inhomogeneities in the
svstem analytically. For simplicity let us first envisage an
inhomogeneous system consisang of two different chemical
regions. One is subsystem A as the mawix phase and another
is denoted as subsystem B as iilustrated in Fig. 1, each of
which behaves as a *‘Devonshire ferroelectric.”” In reality,
the subsvstems A and B are interconnected with one another
as a 0-3 nanocomposite. To constructing an analytic expres-
sion of total free energy, we introduce two local order pa-
rameters. P, (r) and P,(r), corresponding to the polarization
of subsyvstems A and B. Both localized order parameters to-
gether can describe the polarizadon behavior in a medium,
i.e.. an ensemble of clusters within a matrix, on the mesos-
copic scale, over which there are enough atoms present so
that the order parameters have thermodynamic meaning, and
thev can be described in the approximation of a continuous
medium. In the following analysis. we restrict ourselves to
the following conditions. (i) Two local scale order param-
eters correspond to a one-component representation, such as
the case of the (111) directon in PMN system. The two
order parameters have their intrinsic bulk Curie points when
the phyvsical sizes of two subsystems are infinitely large; and
(ii) there is a direct coherent coupling between two order
parameters at interfaces and the phase transition in each sub-
system is of the second order. By following the free-energy
expressions in the literature. >~ the thermodynamic poten-
tial of an inhomogeneous system can be constructed in a
Landau-Ginzburg form.
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A
0+¢b0+ E(VP,/ = zfz(VPb)*'

where &y and &, denote the thermodynamic potental of
subsystems .4 and B in the paraelectric phase state. a, 8. ¥,
. B. and C are coefficients in the thermodynamic expan-
sion. and especially a=ay(7-T;), and A=Ay(T—T,).
T, and T- are the bulk phase transition temperatures in each
subsystem. respectively. T,>T, is defined in the following
discussion. &; and §, are the coefficients of gradient terms of
order parameters. The Ginzburg term &,(VP;) reflects the
presence of polarization inhomogeneities in the material.
o(r) is a delta function which describes the coordinates of
the interface between two subsystems. The & function is
commoniy used to represent the coupiing terms at the inter-
facz in farroelectric media.™="= Although, in principle. the
general conclusion of our theoretcai results will not be af-
fected by choosing the & function as 2 connection function. it
simplifies the analytical and numerical calculations.

The integral of Eq. (2) is over 2il space since the order
paramerars vary spatially. Thus. wthe local order parameters
P..r) and P,(r) are the functions of space coordinates. a,
and b, are rhe radius of domains or subsystems in one of
their poiar axas. More precisely. 2. is defined as the size of
supsvstem 3. representing high-temperature ordered clusters
within farroelectric relaxors. whicz is on a mesosopic scale,
i.e.. »,=2-30nm. The mawix chase is in fact a three-
dlmens‘onal nerwork, and the dimensional scale of the ma-
Tix phase 4. a, essentially stands or the minimum distance
berwesn Tw 0 clusters. which ranges around 2 to 80 nm, from
a nanorratar size up to a submicron level. In reality the av-
2rage size Of a, is relatively larger than b,. The two order
paramezess which appear in the invanant tree-enervy func-
ion can zossess different sequences of irreducible represen-
tations of symmetry groups in the 2rtain temperature range.
Q. and - are defined as the coherent coupling coefficients,
wiich characterize the coherent coupling at the interfaces
berween different regions. Physicaily the coupling terms can
be related to the stored elasic and electrostatic energy
caused by coherency coupling. The coefficients Q, and Q-
stucturaily ailow the polar cluster w0 conerently conjugate to
the other local order parameter. The spatial distribution of
the polarization can be obtained by solving the Euler-
Lagrange 2guations

dp, s A
Cl—“ (aP,+BPi-yP))=0, (3a)
2
§: == (AP,~BPI=CP})=0, (3b)

#ith asscciated periodic boundary conditions
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P b( ry+—

P} {r oot 2 2nla,+b,)- b+b,,_l”

o
P:(r)-é-g + P2 (r)*E-P(r)+ PS(r)

Q

=1
P D‘ r...a,,.,.1+

2 2"(01:' n-l) =b +an+l])}dr'

n=0;x1;%2;*3;..., (2)

[ dp,
'l& ] =0, (4a)
rsz Ma,+b,)~b,
[ dP
L€l -Q\P, =0, (4b)
N r-" ala,=by i 1)=b;
[ dP, i
L& 'E;,"“‘szb] OPy, =0, (40
¢ P 2a,=b,, )~ by
[ dP, :
L &s —-Q Pb} =0. (4d)
- r=" e, =b )b,

Equations (3) and (4) are obtained by functional differentia-
tion of Eq. (2). If there does not exist 2 mutual coupling at
interraces between two subsystems. the thermodynamic be-
havior or each subsystem will become independent of each
other. And then these equations would be exactly identical
with those in the model of Tilley and Zeks*!*2 for describing
the behavior of finite ferroelectric systems.

By considering the interactions berween two subsystems,
a coherent interface state is assumed to be present at the
boundaries of two subsystemns. The coherency is defined by
the requirement that the local order parameters from one sub-
system to another subsystem are continuous across all inter-
faces. In this case, the order parameter in one subsystem will
appear as the exact same as the order parameter of the sec-
ond subsystem at interfaces. i.z..

Polr)| =z 2a,+8,. =6, = PslP ) rms 200, +b,0 )by

(52)
Polr)rms 200, +8,0-5, = PA D rms 200, +b, 0 =5, -
(5b)
Accordingly Egs. (5) become
dP, P
2 By =0, ©
dr dﬁ]r-g 'ld -b )-bl
dp, P
-t Py =0, Y
T s v, ieb,
dp, P, 0 ®)
dr l|r-:,:m,-b,-l)—b, ‘
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y "+—£l =0, )
r ll’-“:n: G- bn‘l’ bl
with the condition d=-d,=d,. (10)

Here Q=§,/d, and Q,=§¢-/d,. d, and d, are defined
as the extrapolation lengths, which reflect the strength of the
coherent coupling at interfaces. Conceptually 4 is similar to
the exmapolation length in the case of an isolated small
particle.”! measuring the strength of the surface effect. We
will discuss this aspect in detail later on.

One of the implications in Egs. (5)-(10) is that localized
phonon modes in adjacent chemically different regions can
be coupled to one another via an interface coupling. The
polar clusters might create highlv nonlocalized electric and
strain delds at interfaces, and these fields might be conju-
gated to the other local order parameter in the vicinity of
interfaces. Two points should be stressed here. (a) The co-
herent coupling resulting in a murual interaction at interfacas
is arising from matching the cluster phase with the parent
phase at interfaces, which leads 10 minimizing the interfacial
energy. Interfacial energy can be elastic or electrostatic in
narurs. :b) In reality, the interfaces between two chemically
dirfersat regions are quite fuzzy. In the continuous-medium
approximaton it is difficult to describe the immediate vicin-
ity of the interface boundary between two structurally differ-
ent regions explicitly. However. the main concern regarding
the imposed boundary conditions is only to ensure that the
order parameters match exactlv at the interface. other than
the 2xac: location of the interface.

III. LOCAL POLARIZATION AND LOCAL
PHASE TRANSITION

A. Local polarizadon distribution

We next examine the influence of heterogeneity on the
distribution of local polarizations. The explicit nontrivial so-
lutions of Egs. (3), i.e.. spatal distribution of polarization
P .ir1and P,(r), can be obtained precisely with the help of
Eas. +5)-110), although. in general. they are quite
cumbersome.”® Specifying a chosen area (—b,.2a,~b,).
we now rind the space profile of the local order parameter
analytically. Focusing attention on the temperature region
from T <¢T. we consider that the induced local polarization
P ,irvin subsystem A is small. while in subsystem B the
polarization P, deviates from P,,. i.., Py=(Pyo—AP,).
Pq is the polarization at the coordinate origin. AP, is the
poiurization variant. primariiv due to the size effect and in-
terface inteructions. By assuming AP, /P,,<1 if the physi-
cai dimension of b is small enough. Egs. (3) can be approxi-
mate!y -aritten as

Phe(—b,,,b,,);
(11a)

ET P, =(A=BP,, ~CP:P,.

g,\‘-’P"=n/{,. Pz, 2u,+b,). (11b)
Note :hat the validity of the wiution of Eq. (11a) can be
inspected by integrating Eq. (3u with additonal symmetrie

bouncar- conditions P, idr-=0 and P —P,, as r—0.
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From the coherent boundary conditions of Egs. (5), the spe-
cial solutions for Eq. (11) can be approximately written as

Pb=PboC°5(,k:f), PE(_bn ,b")' (l:a)
Pyocos( xqb,)
*~ cosh(k,a,) cosh{k,(r=(a,+5,)]},
P,e(b,,,:a,'f-bn), (12b)
with
ag(T-T,)
==, (12¢)
€
. B 44,C n
Pro=| =3¢ |1- VI- 3 (T-T)|| .
and
To.=Ty=i€:x¥Ay), (12d)

where «; and «, are defined as the characteristic lengths,
which reflect the correlation radius of the order parameters
and describe the breath of polarization fluctuation in each
subsystem. Inserting Eq. (12b) into Egs. (8) or (9), one ob-
wains

1
xtanhi xla,)=2. (13)

Since T3 T and thus x,a,> i. one further has

1

=7 (14)
Equarion (14) implies that the extrapolation length of d in
this case is associated with the physical properties of the
adjacent phase and temperatre as well. On the contrary, in
the situaton of free surfaces rair-solid interface), the ex-
trapolarion length of an isolated nanometric particle can be
mainiy considered as a constant>'? This argument in fact
makes sense by considering the fact that the coherent cou-
pling stwrength at solid-solid interfaces should be closely as-
sociated with the surrounding interfacial environment or the
feature of lattice vibrations in the adjacent phase. Likewise,
inserting Eq. (12a) into Egs. (6) or (7), one has

1
tan(xzb,)= —. (15)

When the physical size of polar cluster b, is small, the term
tan(«-b,) in Eq. (15) can be expanded as a Taylor series. By
neglecting the higher-order terms of (x,b,) in Eg. (15) and
using Eq. (14), Eq. (12d) will become

Ta =Ty—(E:v[ai/ VE b,A ). (16a)

Equation (16a) can approximartely estimate the shift of the
Curie point in the cluster phase 8. Clearly, the original Curie
transiton points are modified by the physical size and the
coherent coupling strength. Figure 2 shows the transition
temperarure dependence of the physical size b, of nanomet-
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FIG. 2. The physical sizes of polar clusters as a function of their
size-induced phase transition point. The ree-energy parameters for
this calculation can be found in Tabies I and I, which have the cgs
unit uniess specified.

ric clusters. Essentially the phonon modes of one region can
couple to the soft mode in the adjacent region locally to
perturd the stability of polar phase and soft-mode transition.
giving rise o a disturbance of the corrzlation of dipoles, and
thus leading to a shift of the Curie :2mperature.

On the cther hand. when temperarure is below or near to
T,, the coiarization variant AP in :he cluster domain be-
comes negiigibly small. And then item Eqgs. (3) and (10), the
shift of the Curie point of the matix zhase A near interfaces
can be also astimated by

Tie=T +1E VA /s daag). (16b)

The undeziving physics here is that =wo local order param-
eters are reconciled by a coherent interface boundary condi-
ton. The coherent coupling berween these order parameters
infuences e softening of locai shoron modes, leading to a
shifting of the Curie temperaturss of both the nanometric
cluster phase and the matrix phase. -zspectively.

The varzations of polarization in ceiar clusters are plotted
as the functons of temperature and their physical size in Fig.
3. The incuced polarization P, in subsystem A is also nu-
merically ziotted as the functions of both the normalized

°C)
em‘“‘e :

1e‘9? -109

Polurization

FIG. 3. Calcuiated polarization of 1 poiar cluster as functions of
both :emperature and its physical size.
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Polarization

(a)

o
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‘Temperature (*C)

By Normaiized Distance
1

FIG. 4. Dirferent views or 22 noue
face. The normalized distance »
physical size of polar ciusters
calculaton. ta) The spatial prost
matrix as a function of tamperarurz

< nolarization at the inter-
>t ir=hb,. b, is the
i 2 %.a2 2. =35 nm here for the

¢ =duced polarization in the
.nothe normalized distance. (b)

The local transition temperature is 227724 as one at which the in-
duced polarization approaches zero. . 2. 2 =0, The distribution of
the local Curie temperatures @1 <uss.~wem .4 near the interface is
illustrated here.

coordinate and temperature i F-2+ <. it can be seen that the
polarization in polar clusiers 7 (sorenses at interfaces.
while induced polarization #, “nor2ises near interfaces. Sev-
eral important features are apr 1) The cluster phase
B can induce the polarization :n “n2 ceriphery of subsystem
A, even though the temperature '+ irove the original local
Curie temperature of subsysiers 2 {1 other words, a polar-
ization P,(r) occurring in sutvisiem 4 is caused by the

coherent coupling from subsvsier: 3. i) The initial size of a

‘polarized cluster is determined by “2 wpatial inhomogeneity.

As the temperature decreases. ine ~iz2 of the polarized re-
gions will grow. forming @ poiir ~unodomain with a size
almost twice as large (8-10 am . the initial one (4-5 am)
at low temperature. The remperaiii2 evolution of the spatial
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FIG. 5. Dlustration of the growth pantern of polar clusters by the
polarizarion spatial profile at differeat temperatures.

profile of a cluster polarization is schematically depicted in
Fig. 5. It is clear that upon cooling the region near the
boundarv between two subsvsiems can no longer sustain a
structure with zero polarizaton. even within subsystem A.
As axgected. the ferroelectric phase transition can be nucle-
ated in this region, even though this region is intrinsically the
paraeiectic phase. The poiarization occurring in subsystem
A is exTinsic in nature at this iemperature stage. Experimen-
llyv the growth of polar microregions in PLZT and other
reiaxors has been observed as iemperature decreases.” ~~°
which is quite consistent with our theoretical description.
From :he lartice vibration point of view, the two subsystems
have different characteristcs of phonon modes because of
differences in composition. The coherent coupling can link
two local order parameters conerenty and influences the
softening of the local phonon modes upon one another in
some degree.

B. Local phase transition

We now look at the distributon of local Curie tempera-
tures at interfaces. Figure 4(a) shows that as the boundary
berween polar cluster and nonpolar matrix moves into sub-

)G
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svstem A, the size of polarized region increases. If we define
the loval Curie temperature as the point at which the local
sponzaneous polarization just approaches zero, one can find
in Fig. 4(b) that the local Curie temperature will drop rapidly
from the periphery of subsvsiem A to the interior of sub-
svstemn 4 where the chemical composition favors an unpo-
larized state in this temperarure range. Quite clearly. at the
exac: interface, the local Curie point is the transition tem-
perature of polar clusters, and then it decreases quickly as a
funcdon of the space coordinates.'® The essential point here
is thar the coupling-induced polar structure in a paraelectric
marrix phase can exist even above its intrinsic Curie tem-
perarure. The local Gibbs free snergy in subsystem A as a
funczon of space-polarization coordinate can be obtained by
subsuruting Eq. (12b) into Eg. (2), as illustrated in Fig. 6.
The =volution of potential wells represents the magnitude of
inducsd polarization in subsystem A.

Lasdyv, we close this section by making some comments
on the zoherent coupling and the range of applicability of the
Landau theory. The so-called conerent coupling between two
localized order parameters means that discontinuities in the
distritudon of order parameters are not permitted along in-
tertacss. The lamice coupling plavs an important role in the
coher=at coexistence of two phases with slightly different
lattica parameters and symmesry. There are two fundamental
reasons why the coherent coupiing would occur in real sys-
tems. Since incoherent interfaces usually have higher inter-
facial =nergies than coherent interfaces. the coherent equilib-
mum 2t the interfaces is acrually the stable state if the lattice
matcs is close enough !

Oz the other hand. in its main approximation. the Landau
thecr- of phase transitions ignores long-wave fluctuations of
order parameters. However. it is important to realize that one
zan :alculate contributions from the long-wave fluctuarions
as lorg as the contributions are small enough.*?-* The criti-
=ai range is proven to be verv narrow in ferroelectrics®* >
Secause the smoothly varying Coulomb force is responsible
‘or =stablishing the polar phase. In fact. the logarithmic cor-
reczions have been proven to be difficult to detect experimen-
wally. In experiments. the observed phase-transition behavior
zenerally appears in agreement with the results of Landau
theorw. Practically, in most of cases. one can use the Landau
sheor: to describe the phase transition for the entire phase-
Tansiton region. Therefore. it appears safe to assume that

FREE ENERGY

FIG. 6. The local Gibbs free energy in sub-
system A 2s a function of the distance away from
the interface at 40 K. The scale of aq is in range
of 1 nm.

S A x
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Landau theory will describe the principal physical features of
polarization processes in this study.

IV. DIFFUSE PHASE TRANSITION

Next we explore the connection between the nature of
diffuse phase transformation and the compositional inhomo-
geneity. One of the important properties for ferroelectric re-
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laxors is their mean static susceptibility y(T) near the Curie
range. The static susceptibility of ferroelectrics is defined as

P,
Xi= JoE

=
= (i=a,b). 17
S

Varving the total free energy of Eq. (2) with respect to P,
one can obtain a variation equation.

50=3,| " {[AP,+BP}+CP}+Q:P,8(r=r,,)10P,+ £(VP,) KV P,)}dr

“Tin
+ j_'-. {{aP,+BP3+ yP3+ 0, 8(r=r1,) 18P+ £,(VP,) (VP )}dr, (18)

where

rln=bn+l+22(an+bn+l)_bl+bn+l
With the help of the integral formula

" {E(TPTP)}dr=£(VP,)3P,

“fin

Eq. (18) gives

and rs,=a,-+~22(a,+b,e))—b1+a,4.

" - | e podpgar, (=12) 19)

=3, " (= &(V2P,)+AP,+BP}+ CP3+[ = £-iVP,)+Q:P,)8(r=r )]} 6P,dr

“Ta
T - < ) -
+ j {=6(V-P)+aP,+ BP+yPi+[=&,(VP,)+QP,16(r=r,)]} 6P dr. (20)
“rin
-
Thererore. the average local inverse susceptibilities of polar
clusters and the nearby matrix phase can be expressed as Xom) == T>T3, (23¢)
AO(T T'll::)
1 Tln
bt 3 WP S SCPY+ 1
<an)—2b" _rln{A+38Pb .CP, T st(rirln)}dr, <an)=m T<Tgcv (23d)
(21a) .
' with
1 r s _ e —
(Xah) =5 | {a+3BPI+5vPL+ Q8 Era}dr, Tu=Ti+Glalivhad),
<8n J=ry, p— =
(21b) T3.=T2—(&2vlel/\€iAqby). (23¢)
respectivelv. The identical equation Here a,, is the average rmmmum distance between clusters.
Note that when the physical sizes a, and b, of cluster do-
L. mains and matrix phase become very large, Egs. (23) degen-
f dr{6*(VP,)*16P;}=0, (22) erate into expressions of susceprbility for normal
ferroelectrics.”’

is used for derivation of Egs. (21). As a straightforward con-
sequence of Egs. (21), the average susceptibility of matrix
_ and local susceptibilities of clusters can be written as

>T. (23a)

‘ 1
)~ o=

T<T\.. (23b)

Xa)~ g0

Generally the dielectric properties of dielectric compos-
ites could be estimated by an empirical relationship™®

& =xé-(1-0€, 24)

where €, is the dielectric constant of an entire multiphase
systern. Essentially Eq. (24) is too crude to assess the dielec-
tric response in ferroelectric relaxors because it neglects the
fact that the impedance of polar clusters is relatively larger
than that of the matrix and overlooks the microstructure de-
tails. In order to obtain a realistic dielectric response of ferro-
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electric relaxors. according to a simple Maxwell-Wagner cal-
culadon from Eq. (A2) (see the Appendix) for multiphase
dielectric systems, the effective mean static dielectric suscep-
tibility of the entire system can be written as

= E

(252)

l SFinlXant =

with
all bll

=, and fi, = e————.
T =55, +b,) " %,2(a,+b,)

(25b)

Here 7., is the volume fraction of the local matrix phase
with a minimum distance a, berween two clusters. while
f-n is the volume fraction of cluster domains with a specific
size b, . For simplicity, by assuming a,=a, ., a conserva-
tive estumadon of Egs. (25) can be approximately obtained
from Eg. {A3) as

0~Fih(xz)= 2 &f 2l xon). (26)

with

-

0'

X lna,

NETIE -

o
and h={ —
\a,0

k=(0_,l—£'7..:/b‘,.

is the total volume fraczon of the matrix. A is a
consiant about 0.01-0.1, and < :s a constant of 3-10. de-
pencing uron the ratio of a,/bs, and o,/c,. The acrual
informmatcn about f,, fa,. a,. and b, can be estimated
direczdy om the microstructure characterization done by
transmission-electron microscope ' TEM). 27-29.40-5

Now we consider a PMN crvstal consisting of a mass of
clusters "wvithin a matrix. Based on Eq. (26). the overall di-
electic response of a PMN system is calculated and is illus-
trated in rFig. 7. The calculated ¢ data vielded an excellent fit
to the sxcerimental data.'>’! showing a typical smeared di-
eleciric rasponse over a broad temperature range. The ther-
modynamuc parameters used for our calculation are listed in
Tables I and II. A salient fearur2 demonstrated in Fig. 7 is
that e overall dielectric behavior of the PMN is controlled
by its netzrogeneity. A set of iocalized phase transitions.
anising ‘rom an intrinsic size erfact. superpose together and
conherantiv form a giant dielectnc response over a very broad
temperature range. The overall dielectric coefficient in this
case :~ 2xceedingly larger than that suggested by the LST
relanion. The distribution of physical sizes of heterogeneiry
used in our calculation was roughiv esumated from the mi-
<rosicuciere information offered Sv the TEM characteriza-
non. .nd :t is plotted in Fig. 8. The basic physical picture

Hers -.
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FIG. 7. The calculated temperamre dependence of the mean
susceptbility in a Pb(Mg.Nb) crvstal.

presented in this section is straighdorward: the polar phase
transinon tends to be confined i many localized cluster re-
gions. ranging from a few nanometers up to more than ten
parometers. and the localized Curie points are virtually re-
lared o their physical sizes as weil as the associated coherent
couplicg at interfaces. leading o the localized polarizaton
tluctuavon spreading over a troad temperature range. As a

restit. e overall phase transitien will be no longer a single
C.m* lamperature point but a continuum temperature range
wgen e physical sizes of :he polar phases form a con-
tdpuum Zismibution.

On :ne other hand. the corrziaton lengths of localized
orcar czrameters are limited by :he physical sizes of hetero-
gzze:tes. The local soft modes will not propagate bevond
the povsical scale of the clusters. There exist a distribution of
the ocziized correlation volures covering a broad tempera-
wure range. It can be seen that e sum of the localized cor-
rziauoa ~oiume (or length) is a function of temperature. as
shown in Fig. 9. which determuzes the difussness of the Cu-
—e ranze in the dielectric response. In fact. a giant dielectric
spyrceiscmc) response is created by a set of localized dielec-
= singularities in a broad rangs of temperature. *

Figuare 10 shows the mean rolarization of ferroelectric
nanocsmeosite. significantly  deviating trom the normal
rarrceiecTic behavior. It is found that the calculated polar-
izarion s gradually weakemng and depressing, exhibiting a
nvpical characteristic of diffuse phase-transition behavior.
Quite doviously. the local poianizaton exists well above the
cemperature. at which the dieiecaic constant exhibits its
maximum. This helps explain the expenimental results that
e coiar regions exist well atove the transition temperature.
togzther with the absence of anv evidence from x rays or
neurrcn Ziffraction for a sudden sguctural change in going to
the ‘ow-temperature phase.’

Parumeters of the free-energy expression fcr the polar clusters PbiMg, (Nby )0, in

PMN.  Since curreatly there are no free-energy parameterss ‘or PHiMgNb)O, available. .he free-energy

purumeters of PhiZ:, . Ti, 10, are adopted for our calcuiation ~

1€0] (cgs unit unless specitfied

T.. \. B

C ;’: (Cm):

50 <C INI0 T CRe 2D

0 738% 107" (Ref. &2 2341073 (Ref. 52)

51070 (Ref. 53)

4T,, here is set watneut reterence



[

DIFFUSE PHASE TRANSITION IN FERROELECTRICS ...

12075

TABLE 1I. Parameters of the free-energy expression for the marrix phase in the PMN. Since currently
there are no free-energy parameters for the matrix phase of PbiMg. Nb)O, available, the free-energy param-

eters of SrTiO; are adopted for our calculation.

Teo ag Y & (cm)?
35K 1571074 4.73(T+15.6)x10™+* 2.96x 1072 $X 10718
(Ref. 54) (Ref. 55) (Ref. 54 (Ref. 54) iRef. 53)

Equation (23e) is exactly identical with Egs. (16). Appar-
endy T, and T,, are not only related to the physical sizes
a, and b, of heterogeneities. but also they are associated
with the elastic coefficients, and therefore their values are
dependent upon 2 driving frequency. Qualitatively it can be
seen in Eq. (23e) that T, will become larger when |af gets
smaller in the case of a higher driving frequency. In other
words. the whole Curie range will consequently shift towards
a higher temperature range under a higher driving frequency.
Therefore it may be reasonably believed that significant dis-
persion of dielectric response near the Curie range is origi-
nated from the microstructure effect. More detailed discus-
sions abour the dynamic behavior and other aspects of
ferroelectric relaxors will be discussed in several other sepa-
rate papers.

In closing, we would like to make a final remark about
this approaci. Basically, relaxor ferroelectrics exhibit an un-
usual variety and richness of phase-wransition features. The
present approach is a quite generai one, which might not
explain all experimental results for all kinds of material Sys-
tems in details. Nevertheless, generally, our main calculated
results are consistent with the principal experimental results
for some tvpical relaxor systems. such as PLZT(8/65/35) or
Pb(Mg;5Nb.3)0;.

V. SUMMARY

Beginning from a basic formulation of the Ginzburg-
Landau free-energy equation with physically allowed order

Median Size=6.3 nm

" Volume Fraction (%)
'S

2.6 4.4 6.2 8 9.8
Polar Cluster Sizes (nm)

FIG. 8. The volume fraction distribution of polar clusters with
different physical sizes.

parameters in an inhomogeneous medium, we have pre-
sented a straightforward thermodynamic approach to diffuse
phase transitions in ferroelectrics with mesoscopic inhomo-
geneides. In our view, this approach provides important in-
sights into the basic physics of the DPT in ferroelectric re-
laxors. and it contributes to the understanding of the
structural instabilities in inhomogeneous ferroic materials,
Despite a number of simplifications, the presented analysis
can stll explain the principal characteristics of phase trans-
formation in ferroelectrics relaxors. Moreover, the model can
account well for a number of the eiectrical. thermal, and
microstructural observations in relaxor ferroelectrics. Next
we summarize our main results.

1i) A determined effort has been made to study the dielec-
tric behavior of a system with mesoscopic heterogeneity. The
evoluton of the polarization procsss of the coherent polar
phase within a paraelectric medium has been discussed based
on coherent lattice coupling and its heterogeneity. The pro-
cess inciudes coherent precipitaton and nanopolar cluster
coarsening in an inhomogeneous medium, According to our
mcdel. the coherent lattice coupling berween different phases
imposes a critical constraint on the characteristics of local
soft-mode phonons and the behavior of the phase transition
in inhomogeneous media with nanopolar clusters. The local
paraelecTic-ferroelectric transiton can be thought of as a
perturbing influence of localized chemistry on localized soft- -
mode poonons. The unique feature in this approach is that
coherent coupling is maintained across interfaces between
two chemically different ordering regions.

(ii) On the basis of the spatiai beterogeneity, we have

s ' A :
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FIG. 9. The sum of the local correlation volume as a function of
temperature.
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FIG. 10. The calculated temperarure dependence of the mean
polarizadon of a PMN crystal.

derived toth the overall dielectric response and the local po-
larizadon disaibutions. We consider that each localized clus-
ter has a mean-field character and it can be described by the
Ginzburg-Landau formalism at its own *‘fixed point.’* We
connect all these localized clusters, which have size-
depencenr phase-transition points. to their matrix phase to
describe the overall dielectric response of the entire svstem
over a vide temperature region. Based on this approach. the
diffuse chase transition in the relaxors could be understood
as an irhomogeneous condensation of localized soft modes.

The analvsis presented here. we believe. is the first to
demonsirate how the gradual crossover characteristics of the
relaxors evolve, which is inhereadyv consistent with most of
the experimental observations. and explains well the general
princirie or diffuse phase transition in relaxor ferroelectrics.
therebyv despening our understanding of the spectacular prop-
erties Of these industrially imrortant materials.
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APPENDIX

The localized dielectric susceptibility of a cluster with a
surrouncing matrix laver can be estimated by a Maxwell-
Wagner formalism.%%7 Here we take a PMN crystal as a
typicai saxample of ferroelectric relaxors with a 0-3 micro-
structurai connection. In the cluster phase of the PMN, the
Mg=" 2nd Nb*~ ion order is in fact in a I:1 ratio on the
B-site sublattice of the PMN. Since the Mg/Nb ratio is 1:1
within the ordered domains (as opposed to 1:2 for the aver-
age composition) the clusters have a net negative charge with
respec: 0 the matrix phase in order to preserve stoichiom-
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R, = —=C=",
Oy
G, a,

FiG. !1. Equivalent circuit diagram of a cluster with its sur-
rounding Jatrix phase.

ey It foilows that the matrix must be a Mg-rich region and
positdvelv charged.

Clusters and the marrix phase can be considered as accep-
tor and Jonor-type semiconductors. respectively. The result-
ant pure Schottky barriers at interface boundaries between
the marrix and clusters can reduce the effective conductivity
of ciusrers drastically, quite analogous to the situation of a
doped BaTiO; ceramic.’®~% It should be noticed that this
interTace effect does not esseatally arfect the conductivity of
the matix because its geomewy connection is three-
dimeasional in character.

A cluster with its surrounding matrix phase can be de-
scribed by an equivalent circuit as shown in Fig. 11.8"6?
According to the equivalent circuit diagram. the local static
suscepubility can be written as¥*

_ (b,l(Xb,)(f:‘a.,(Xa,,)(fz)(bn+ﬂn)
- (b0, =28,40)° )

Xln) (Al)
Her= / x.,) is the localized susceptbility and a,, is the aver-
age minimum size between two clusters. By considering that
the effective conductivity of the cluster phase is much
smaller than that of the matrix phase. o, < o, near the cluster
phase transition. the static localized susceptibility in whole
temperarure range can be written as

+b,)

(a, b,o,
X1y —p—

2
(an)‘(ano,b) (Xnn)- (A2)
Equatdon (A2) shows an interesting reverse effect of the bar-
rier laver capacitors, similar to that of the well-known con-
veational interfacial capacitors.*% leading to significant en-
hancement of local effectve dielectric properties. A quite
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conservatve estimation of Eq. (A2) can be obtained by as-
suming a,~b, and 100,=0,, ie.,

(Xln)~2(an)+0'04<Xan)- (A3)

At the optical frequency, the localized susceptibility in the
whole temperature range can be written as

(@a+ba)Xan)  (3,+b,)(x,,)
(Xln)= -

(an+bu(Xan>/(an)) . (bn"'an(Xbu)KXan)) )
(Ad)

Equadon (A4) implies that the dielectric constant of ferro-
electric relaxors will be reduced at least as much as 50%
when the driving frequency increases to an optical frequency
level.
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ABSTRACT
The dielectric response of a ferroelectric muitilayer, having a designed
heterogeneity, has been studied near its phase transition range by use of the
Landau-Ginzburg theory. The coherent lattice coupling between ultrathin
layers can be significantly strong, resulting in a broad phase transition of the
superlattice system as a whole. The thickness of layers and their spatial

distribution hold the keys for enhancing dielectric properties in a broad
temperature range.

§ 1. INTRODUCTION

There is a fundamental interest in the study of ferroelectric superlattices because
their mesoscope structures drastically differ from bulk homogeneous materials.
Normally the dielectric constants in ferroelectrics can be estimated by the
Lyddane-Sachs-Teller (LST) relation. and the phase transition behaviour of ferro-
electrics can be quite accurately described by mean-field theories. such as the Landau
theory (Cross 1993). However, experimentally it has long been found that in reality
ferroelectrics with inhomogeneities exhibit a very broad dielectric peak near their
Curie temperature, whose dielectric coefficients often are larger than those suggested
by the LST relation (Burns and Burnstein 1973, Cross 1993). The phase transitions
in these materials are called diffuse phase transitions (DPTs) because they are char-
acterized by broad anomalies in the dielectric response near the transition tempera-
ture region. exhibiting unusually large values of dielectric coefficients in a wide
temperature range.

It has been expected that dielectric characteristics of ferroelectrics could be
manipulated by controlling the material’s heterogeneity at a mesoscopic level
(5-80nm) (Cross 1993), leading to artificially engineering ferroelectric phase transi-
tions and ferroelectric dielectrics with exceedingly larger dielectric coefficients.
Basically the dielectric response in ferroelectrics can be virtually altered by intro-
ducing local modifications of lattice structures because dielectric characteristics in
- ferroelectrics are mainly determined by the collective movement of transverse optic
phonons or soft modes, which reflects the relative vibrations of cations and anions
in ferroelectrics. Nevertheless, despite numerous experiments over several decades,
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it is still not clear what is the exact link between the localized soft modes and the
anomalous dielectric behaviour manifested by ferroelectrics with heterogeneities.
Recently experimental efforts synthesizing ferroelectric superlattices have been
initiated by several groups (Wiener-Avnear 1994, Hayashi and Tanaka 1995,
Kanno er al. 1996, Christem er al. 1996) in order to produce ferroelectrics with
novel dielectric properties through control of heterogeneities.

However, all these efforts overlooked a critical aspect: the heterogeneity in ferro-
electrics with a DPT is inhomogeneous in nature. From the phase transition point of
view, the inhomogeneous heterogeneity is most likely a key to causing the dielectric
anomalies in ferroelectrics. As is well known. in normal systems. the spatial correla-
tion length of order parameters (such as polarization) diverges at the Curie point.
resulting in one and only one dielectric singularity in materials while, in inhomoge-
neous systems. the situation is quite different. The phase transitions in this case tend
to be confined in localized regions. ranging from a few nanometres up to a submi-
cron level in scale. Additionally, the correlation lengths of local order parameters are
limited by the physical sizes of heterogeneities. The soft modes will not propagate
beyond the physical scale of the heterogeneity. In this case the localized transition
points should be intimately influenced by the physical sizes of the heterogeneity, and
the size effect of the heterogeneity should. in principle, also have a critical influence
on the overall dielectric response of ferroelectrics.

In this work. for the first time. we present a quantitative connection between the
heterogeneity and dielectric response in inhomogeneous ferroelectric systems and
report a theoretical estimation of dielectric response in a ferroelectric multilayer
system with designed heterogeneity. based on an extended Ginzburg-Landau
model. Our numerical results predicate that a giant dielectric susceptibility might
be obtained in ferroelectric superlattices or ultrathin multilaver systems with the
desirable heterogeneities.

§ 2. MobEL

The Landau theory has long been successfully used to explain the phase transi-
tion behaviour of ferroelectrics. and it has proved to be a good description of the
phase transition behaviour in ferroelectrics because the smoothly varying Coulomb
force is mainly responsible for establishing the polar phase. Recently it has been
extended to study the surface and size effect on nanostructured ferroelectrics (Tilley
1993). Following the expressions for the free energy in the literature, we now con-
sider the O,—C,, proper ferroelectric phase transitions in a multilayer system with 60
alternating layers of SrTiO; (STO) and Pb(Tiy.sZr,.5)O; (PZT), in which each layer
has Ising character. For simplicity, let us assume that the order parameters of local
polarizations are always oriented along the = axis, that is P = {0, 0, P(z)}, and the
superlattice dimensions along the x axis and y axis are infinite. The free energy of the
superlattice system with alternating slabs of thicknesses a, and b, can be written as
(Tilley and Zeks 1984, Schwenk er al. 1990, Wang and Mills 1992)
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F L/2 < h - bl
o= =J L {«p,,o + & + 5 (VP,) +§,=(vpb)- +iaPl+18P) +1yPS

n

*_ACPZ T%QZPl%é l:- =+ bn-&-l - (Z 2((1,, - bn-{-l) - bl + bn+l)] }d:~ (l)

n

+§Q1P36[zian+. + (Z 2@y + byet) — by +a,+,)] +44P; + 1BP;

where S is the surface area of the superlattice with plane surfaces at = = £L/2. &,
and &, denote the thermodynamic potentials of STO and PZT layers in their para-
electric phase states. a.(,v,4, B and C are normalized free-energy coefficients, in
which elastic coefficients and other relevant coupling parameters are tacitly included,
and especially o = ao(T — T) and 4 = Ao(T — T»). T, and T are phase transition
temperatures in the bulk materials of layers STO and PZT respectively. £, and &, are
the gradient terms of order parameters. describing the polarization inhomogeneity.
@; and Q- are defined as the coherent coupling coefficients, which are not indepen-
dent parameters and characterize the coherent coupling at the interfaces between
different regions. Physically the coupling terms can be related to the stored elastic
and electrostatic energy caused by coherency coupling. §(=) is a delta function which
describes the coordinates of the interface between two layers.

The integral in eqn. (1) is over all space since the order parameters vary spatially,
which is illustrated in fig. !. The spatial distribution of the polarization can be
obtained by solving the Euler-Lagrange equations

a’p,

& dr

— (aPy + 3P, ~7P;) =0, (2a)

2

— (4P, + BP} ~ CP}) = 0. (2b)

’..

with the following coherent boundary conditions at the interfaces:

P,(z) = Pb(:)l:-_-[zn 3(“".,.1,”_')_/,‘]- P,z = P”(:)|:=[Z,.3‘"~*"’~>-”|]’ (3a)

Model superlattice structure described in the text. Here a, and b, are the thicknesses of STO
and PZT layers. respectively.
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<ﬂ+-’ﬁ)‘ 0, (dP“—ﬁ) =0, (3b)

dz = di/ =[S 2ia.+b-b)] dz  d\ /=[S 2Aa.+b,.)-by)

(C_iﬁ+fﬁ) =0 (gﬁ_ﬁ) =0. (3¢
dz ~ d, =3, 2y +byey)—by ] ’ d- 4 :=[Z'2(a,+b,)-b,]

Here d, = —d», and d, = §,/Q,, d» = &/Qa, which reflect the strength of the inter-
face effect (Tilley and Zeks 1984). The coherency is defined by the requirement that
the local order parameters from one subsystem to another subsystem is continuous
across all interfaces.

§ 3. LOCAL PHASE TRANSITION
The non-trivial solutions of eqns. (2) can be derived exactly although, in general,
they are quite cumbersome. For brevity, focusing on only the temperature region
T, < T < T, the approximate solutions of eqns. (2) can be written as

Pb = PbO €Oos {I".‘ [r - (Z 2(0,, +bn+|) - bl.— bn+l)] }v (40)

p,= Py cos (Kabpai) cosh [kx (, - Z(a” +b,.)—b + a,,+,>], (4b)

cosh (k1a,.)

with
121y 12
Py = t{—% [l + (1 - 4';(’2C(T - th)> }} (the first-order transition),
(4¢)
21y 2
Py = t{—% [l - (l - 4202C (T - Tu)) ] } (the second-order transition),
(44d)
_ ((T - m)‘”_ 1
e J " |d| tanh (x,a,.y)’
(4e)
o = 1
* 7 |daf tan (k2bpe1)
(4f)
and
2
K
TZC = Tz - £:402 )

(48)



P_'_——'—'————'—_—'——"if"w

Dielectric response in ferroelectric superlattices 51

where x; and k- are defined as the characteristic lengths. which describe the breadth
of polarization fluctuation in the two types of layer. In the case of the first-order
‘phase transition. the size-induced phase transition can be written as

332 Ezli%

L= F 64 Ay (5)

Equations (4) represent the spatial variations in local order parameters of the super-
lattice system. The polarization in PZT layers is plotted as functions of both tem-
perature and their physical sizes in fig. 2. Quite apparently an important feature is
that the phase transition temperature of each layer is virtually related to its physical
size and the associated coherent coupling at the interfaces. As a result, the phase
transition in the inhomogeneous system will no longer be a temperature point but a
continuum temperature range when the physical sizes of polar phase form a con-
tinuum distribution. '

The spatial profile of polarization P, in the STO of layers is also numerically
plotted as the functions of both the normalized coordinate and the temperature in
fig. 3. One can find that the PZT layers with higher phase transition points can
induce polarization in the peripheries ot the STO layers. even though the tempera-
ture is above the original bulk Curie point of STO layers. The local polarization
P,(r) occurring in STO layers is caused by the coherent coupling from PZT layers. In
other words. the ferroelectric phase transition can be nucleated in the region which is

intrinsically the paraelectric phase. In this case. the polarization occurring in the
STO layers is extrinsic in nature.

Polarization (10%)

Calculated polarization in PZT layers as the functions of both temperature and their
thickness. In our calculation. we take a, = a,,; = 5nm for STO layers.
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Polarization (10%)

The view of the induced polarization in the STO layers as the functions of both temperature
and the normalized distance away from the interfaces.

§ 4. DIFFUSE PHASE TRANSITION
One of the important properties of ferroelectrics is their static susceptibility x(7)
near the Curie range. Next we examine the static dielectric responses in our super-

lattice system. The average local inverse susceptibilities of the PZT and STO layers
can be expressed as

(x5, ) = Loe
b '~ 2b,dP;

1

b, .
:::—-—J A+3BP) = SCPy + Q26| = b,
an -b,

+ 22(0,, + bpey) = by + bysy
n

1 8¢

-t _ il
{xa} = 2a, OP;

l 2
7 r a+33P3-:—57P",,+Q,5 sXa,,

+ Zz(an+bn~l)_bl+an+l (6b)
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respectively. According to the Maxwell-Wagner formalism (Volger 1960. Anderson
-1964) the effective static dielectric susceptibility of the entire system can be approxi-
mately expressed as

a, ? ' b" ?
(X> - zn: (an + bn) -fl”(x“n) N zn: (an + bn) f2”<Xb~>’ (7)
where
f=an| St b), Fu= by | S 2ar ) ®
( 1
—— T>Tt., ' 9a
ao(T — T : ®a)
(Xa,,) ~{
-1 '
| 200(T = T7)’ < T o0
( 1
—_— T >T, 9¢
AO(T— ."Zxc) ( )
(X5,) =4
-1 "
zar-Tp TS oo
with
) Alx/z a 1/2
T1c=Tl+€—ll/|'f—"'y T§'c=T2—€lz/|2 | . (10)
2 Qpay, €| Aobn

Here f,, is the volume fraction of the nth STO layer, while f5, is the volume fraction
of the nth PZT layer. For a conservative estimation, we have tacitly assumed that
both layers have the same conductivity. Note that, if choosing the layers with dif-
ferent conductivity, the effective dielectric response will increase even more drasti-
cally (Volger 1960). We shall not discuss this situation here. The thermodynamic
parameters used for our calculation are listed in tables 1 and 2.

By designing a special distribution for the thickness of PZT layers, as illustrated
in fig. 4, the overall temperature dependence of the average dielectric susceptibility
and the spontaneous polarization are numerically presented in fig. 5 and fig. 6

Table 1. Parameters of the free energy expression for PZT (cgs units unless specified).

T (°C) Ay B C &
3929, 1.63 x 1075 0-738 x 107124 2.3 x 1072 5 x 1071¢¢

¢ The free-energy parameters from Haun ez al. (1989).
b The free-energy parameters from Amin e al. (1985).
¢ Data from Ginzburg (1961).
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Table 2. Parameters of the free-energy expression for STO.

Teo (K) Ay B c

35.5¢ 1.57 x 107 473(T - 1536) x 10712 2.96 x 10°2'®

2 Data from Muller and Burkard (1979).
b Data from Lawless and Morrow (1977).

Number of Layers

46 5 54586266 7 7.5 8.18798410.112 14
Thickness of PZT layers (nm)

The thickness distribution of PZT layvers in the STO/PZT multilayer system.

respectively. It can be found that the polarization is gradually weakening and depres-
sing, displaying a significant deviation from the normal ferroelectric behaviour. On
the other hand. since the thickness of PZT lavers has a distribution. the local phase
transition points in the superlattice are spread into a temperature range, and in fact
these local phase transitions are superposed in some degree so as to make the entire
superlattice system on the verge of structural instability under a broad temperature
range. As is evident in fig. 6. the overall dielectric behaviour of the superlattice
demonstrates a giant response. showing that dielectric constant in the practically
useful range can be well above a value of 5000. This illustrates a salient feature of
dielectric behaviour in superlattices with inhomogeneous heterogeneity; a set of
localized phase transitions, arising from an intrinsic size effect, slightly superpose
together and coherently form a giant dielectric response over a very broad tempera-
ture range. More precisely, there exist a distribution of localized correlation lengths
covering a temperature range in the superlattice, and a set of localized dielectric
singularities in a broad range of temperature which create a giant dielectric
(pyroelectric) response. The overall dielectric coefficient in this case is considerably
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Fig. 5
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The temperature dependence of the mean polarization of the STO/PZT superlattice with a
total thickness of 0-407 pm.
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The temperature dependence of the mean susceptibility of the STO/PZT superlattice.

larger than that suggested by the LST relation. It can also be clearly seen in both
fig. 5 and fig. 6 that the local polarization can exist well above the temperature at
which the dielectric constant exhibits its maximum, exhibiting a typical characteristic
of the DPT. Note that in our calculation we do not consider the elastic stress induced
by the lattice mismatch at interfaces. which could significantly affect the values of the
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free-energy parameters and the overall dielectric response of superlattice systems as
well. One typical example for this situation. in reality, is the interface influence on
properties of the BaTiO,/SrTiO; system. Nevertheless. we believe that the general
conclusion of our results should still hold qualitatively. A potential application for
this intrinsic size effect is to make supercapacitors with ultrathin (ferroelectric/
conductor) or (ferroelectric-insulator ferroelectric—-semiconductor) multilayer struc-
tures for energy storage and wireless applications. which might possess the highest
possible electric charge density that one could ever achieve.

From the experimental point of view. it is better to synthesize STO/PbTiO; and
KTa0,/KNbO; superlattice systems because only a small lattice mismatch at inter-
faces will result in these systems. Another way to make thin films with giant dielectric
constants is to synthesize multilayver or graded systems with a step and continuing
change in Curie points within the system (Mantese er al. 1995). We shall discuss this
case in a separate paper.

As a final remark. we would like to address the applicability of Landau theory to
ultrathin films. In general. the validity of the Landau theory for ferroelectric phase
transitions has been roughly justified and discussed by Ginzburg (1961, 1976,
1987a.b). The critical range for bulk ferroelectric perovskite has been proven to be
very narrow. and the logarithmic corrections have proven to be difficult to detect
experimentallv. The physical reason for this is that the Coulomb force. which is
responsible for establishing the order phase. varies smoothly. Moreover. the critical
fluctuation can also be suppressed by strain fields since most ferroelectric perovskites
are involved with strong couplings of elastic strains.

However. in the main approximation. the Landau theory of phase transitions is
equivalent to the theory of self-consistent field (mean-molecular-field) theory, ignor-
ing long-wave fluctuations of the order parameter, which is supposed to be quite
significant in the case of thin films. In other words. in the case of ultrathin films, it
should be expected that polarization fluctuations will become more significant. even
though the true critical region in ferroelectric perovskites is quite narrow. Therefore,
in principle. an even more significant overall dielectric enhancement might be
expected for our studied heterogeneous structures. In fact the power-law singularity
obtained from the Landau model can be modified by a logarithmic correction factor
via a renormalization group technique. and the relevant formulae for the critical
behaviour of ferroelectric thin films can be found in the literature (Kretschmer and
Binder 1979). In the work presented. we perform only a quite crude estimation of
dielectric behaviour for a specially designed heterogeneous structure. It is necessary
to make a more rigorous evaluation of the dielectric susceptibility for ferroelectric
superlattices of this type. It would be extremely helpful to evaluate directly the
leading fluctuation corrections for ultrathin layers of ferroelectric perovskites
based on a pertinent microscopic model. It is possible that critical properties of
ultrathin perovskite layers might significantly deviate from the Landau behaviour,
for example. exhibiting a Kosterlitz-Thouless (1973) like critical characteristic.

§ 5. CONCLUSIONS
In summary, a calculation of the dielectric behaviour of ferroelectric superlattices
with inhomogeneous heterogeneity has been performed. On the basis of the spatial
heterogeneity, we have derived both the overall dielectric response and the local
polarization distributions. We consider that each localized layer has an Ising char-
acter and it can be described by the Ginzburg-Landau formalism at its own ‘fixed
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point’. "We connect all these localized ultrathin polar layers, which have thickness-
dependent phase transition points. to their neighbouring non-polar layers to describe
the overall dielectric response of the entire superlattice system over a wide tempera-
ture region. The coherent coupling between different layers can lead to a huge
enhancement of the dielectric properties in a broad temperature range. The overall
dielectric response in the superlattice is controlled by the distribution of thicknesses
of PZT of layers, that is the heterogeneity, as weil as the associated coherent cou-
pling effect. The spirit of our approach is akin to a kind of inhomogeneous renor-
malization procedure at mesoscopic scale. Based on this procedure, the DPT in this
type of superlattice could be understood as a result of the inhomogeneous condensa-
tion of localized soft modes.
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